Math, asked by MdRiyasathAli, 9 months ago

(2+sin^6a+cos^6a)/(
sin^2a+cos^4a)

Answers

Answered by erpajaggaiah
4

Step-by-step explanation:

The given equation is:

2(sin^{6}A+cos^{6}A)-3(sin^{4}A+cos^{4}A)+12(sin

6

A+cos

6

A)−3(sin

4

A+cos

4

A)+1

Using a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})a

3

+b

3

=(a+b)(a

2

−ab+b

2

)

⇒2(sin^{2}A+cos^{2}A)(sin^{4}A-sin^{2}Acos^{2}B+cos^{2}A)-3(sin^{4}A+cos^{4}A)+12(sin

2

A+cos

2

A)(sin

4

A−sin

2

Acos

2

B+cos

2

A)−3(sin

4

A+cos

4

A)+1

⇒2(1)(sin^{4}A-sin^{2}Acos^{2}B+cos^{4}A)-3(sin^{4}A+cos^{4}A)+12(1)(sin

4

A−sin

2

Acos

2

B+cos

4

A)−3(sin

4

A+cos

4

A)+1

⇒2sin^{4}A-2sin^{2}Acos^{2}B+2cos^{4}A-3sin^{4}A-3cos^{4}A+12sin

4

A−2sin

2

Acos

2

B+2cos

4

A−3sin

4

A−3cos

4

A+1

⇒-sin^{4}A-2sin^{2}Acos^{2}B-cos^{4}A+1−sin

4

A−2sin

2

Acos

2

B−cos

4

A+1

⇒-(sin^{4}A+2sin^{2}Acos^{2}B+cos^{4}A)+1−(sin

4

A+2sin

2

Acos

2

B+cos

4

A)+1

⇒-(sin^{2}A+cos^{2}B)^{2}+1−(sin

2

A+cos

2

B)

2

+1

⇒-1+1=0−1+1=0 = RHS

Hence proved.

Similar questions