Math, asked by pratik655, 10 months ago

2 Sin 7 theta cos 3 theta is equal to ​

Answers

Answered by raosahab6848
2

Step-by-step explanation:

gdhskdbbdhjdjvsksusblhnslsjjs

Attachments:
Answered by lublana
6

Given:

2Sin(7\theta)Cos(3\theta)

To find:

The value of 2Sin(7\theta)Cos(3\theta)

Solution:

2Sin(7\theta)Cos(3\theta)

We know that

2SinACos B=Sin(A+B)+Sin(A-B)

Using the formula

2Sin(7\theta)Cos(3\theta)=Sin(7\theta+3\theta)+Sin(7\theta-3\theta)

2Sin(7\theta)Cos(3\theta)=Sin(10\theta)+Sin(4\theta)

2Sin(7\theta)Cos(3\theta)=Sin(10\theta)+Sin(4\theta)

Hence, the value of 2Sin(7\theta)Cos(3\theta)=Sin(10\theta)+Sin(4\theta)

Similar questions