2 sin 75° cos15° = {(2+√3)
.
Answers
Answered by
0
Answer:
Sin75°=sin(45°+30°)
=Sin45°cos30°+cos45°sin30°
= >[Sin(A+B)=sinA cosB+cosA sinB]
=1/√2.√3/2+1/√2.1/2 [sin45°=cos45°=1/√2]
=√3+1/2√2 Ans.
Cos15°=cos(45°–30°)
=> [Cos(A-B)=cosAcosB+sinAsinB]
Cos(45°-30°)=cos45°cos30°+sin45°sin30°
=1/√2. √3/2+1/√2. 1/2
[sin30°=1/2 & cos30°=√3/2]
=√3/2√2+1/2√2
=√3+1/2√2
Now,
2 sin 75° cos15° = 2*√3+1/2√2
Answered by
0
Answer:
Step-by-step explanation:
2 sin75 cos15=sin(75+15)+sin(75-15)
=sin90+sin60
=1+
=
Similar questions