Math, asked by Harshikarnavat3195, 9 months ago

2 sin inverse 4/5 + sin inverse 24/25​

Answers

Answered by pratyushnishchal
0

sin^{-1}(x)+sin^{-1}(y)=sin^{-1}[\sqrt{1-y^{2} }+y\sqrt{1-x^{2} } ]

x=4/5

and y=24/25

sin^{-1}\frac{4}{5} +(sin^{-1}\frac{4}{5}+sin^{-1}\frac{24}{25})

sin^{-1} [\frac{4}{5}\sqrt{1-\frac{24}{25} ^{2}}+\frac{24}{25}\sqrt{1-\frac{4}{5} ^{2} ]=(sin^{-1}\frac{4}{5}+sin^{-1}\frac{24}{25})

sin^{-1} [\frac{4}{5}\sqrt{1-\frac{576}{625} }+\frac{24}{25}\sqrt{1-\frac{16}{25}  ]

sin^{-1} [\frac{4}{5}\sqrt{\frac{49}{625} }+\frac{24}{25}\sqrt{\frac{9}{25}  ]

sin^{-1} [\frac{4}{5}(\frac{7}{25})+\frac{24}{25}(\frac{3}{5} ) ]

sin^{-1} [\frac{28}{125}+\frac{72}{125} ]

sin^{-1} [\frac{100}{125}]

sin^{-1} [\frac{4}{5}]=(sin^{-1}\frac{4}{5}+sin^{-1}\frac{24}{25})

(sin^{-1}\frac{4}{5}+sin^{-1}\frac{4}{5})

sin^{-1} [\frac{4}{5}\sqrt{1-\frac{4}{5} ^{2}}+\frac{4}{5}\sqrt{1-\frac{4}{5} ^{2} ]

sin^{-1} [\frac{4}{5}(\frac{3}{5} )+\frac{4}{5}(\frac{3}{5})  ]

sin^{-1} [\frac{12}{25} +\frac{12}{25}  ]

sin^{-1}\frac{24}{25}

Similar questions