Math, asked by ashutoshsahoo6370, 9 months ago

2 sin inverse 4/5+sin inverse 24/25

Answers

Answered by pulakmath007
3

SOLUTION

TO DETERMINE

The value of

 \displaystyle \sf{2 { \sin}^{ - 1} \bigg(  \frac{4}{5} \bigg) + { \sin}^{ - 1} \bigg(  \frac{24}{25} \bigg) }

FORMULA TO BE IMPLEMENTED

We are aware of the formula on inverse Trigonometric function that

 \displaystyle \sf{2 { \sin}^{ - 1} x =  { \sin}^{ - 1} \bigg(2x \sqrt{1 -  {x}^{2} }  \bigg) }

EVALUATION

Here the given expression is

 \displaystyle \sf{2 { \sin}^{ - 1} \bigg(  \frac{4}{5} \bigg) + { \sin}^{ - 1} \bigg(  \frac{24}{25} \bigg) }

Now

 \displaystyle \sf{2 { \sin}^{ - 1} \bigg(  \frac{4}{5} \bigg) }

 \displaystyle \sf{ =  { \sin}^{ - 1} \bigg[\: 2 \times  \frac{4}{5} \times   \sqrt{1 -  {\bigg(  \frac{4}{5} \bigg)}^{2} }  \: \bigg] }

 \displaystyle \sf{ =  { \sin}^{ - 1} \bigg[\: 2 \times  \frac{4}{5}  \times  \sqrt{1 -   \frac{16}{25} }  \: \bigg] }

 \displaystyle \sf{ =  { \sin}^{ - 1} \bigg[\: 2 \times  \frac{4}{5}  \times  \sqrt{  \frac{25 - 16}{25} }  \: \bigg] }

 \displaystyle \sf{ =  { \sin}^{ - 1} \bigg[\: 2 \times  \frac{4}{5}  \times  \sqrt{  \frac{9}{25} }  \: \bigg] }

 \displaystyle \sf{ =  { \sin}^{ - 1} \bigg[\: 2 \times  \frac{4}{5}  \times    \frac{3}{5}   \: \bigg] }

 \displaystyle \sf{ =  { \sin}^{ - 1} \bigg[\:  \frac{24}{25}  \: \bigg] }

Thus we get

 \displaystyle \sf{2 { \sin}^{ - 1} \bigg(  \frac{4}{5} \bigg) + { \sin}^{ - 1} \bigg(  \frac{24}{25} \bigg) }

 \displaystyle \sf{ = { \sin}^{ - 1} \bigg(  \frac{24}{25} \bigg) + { \sin}^{ - 1} \bigg(  \frac{24}{25} \bigg) }

 \displaystyle \sf{ =2 { \sin}^{ - 1} \bigg(  \frac{24}{25} \bigg)  }

 \displaystyle \sf{ =  { \sin}^{ - 1} \bigg[\: 2 \times  \frac{24}{25} \times   \sqrt{1 -  {\bigg(  \frac{24}{25} \bigg)}^{2} }  \: \bigg] }

 \displaystyle \sf{ =  { \sin}^{ - 1} \bigg[\: 2 \times  \frac{24}{25}  \times  \sqrt{1 -   \frac{576}{625} }  \: \bigg] }

 \displaystyle \sf{ =  { \sin}^{ - 1} \bigg[\: 2 \times  \frac{24}{25}  \times  \sqrt{ \frac{ 625 - 576}{625} }  \: \bigg] }

 \displaystyle \sf{ =  { \sin}^{ - 1} \bigg[\: 2 \times  \frac{24}{25}  \times  \sqrt{ \frac{ 49}{625} }  \: \bigg] }

 \displaystyle \sf{ =  { \sin}^{ - 1} \bigg[\: 2 \times  \frac{24}{25}  \times   \frac{7}{25}   \: \bigg] }

 \displaystyle \sf{ =  { \sin}^{ - 1} \bigg[\:  \frac{336}{625}   \: \bigg] }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. tan⁻¹2 +tan⁻¹3 is..,Select Proper option from the given options.

(a) - π/4

(b) π/2

(c) 3π/4

(d) 3π/2

https://brainly.in/question/5596487

2. tan⁻¹(x/y)-tan⁻¹(x-y/x+y)=....(x/y≥0),Select Proper option from the given options.

(a) π/4

(b) π/3

(c) π/2

(d) π

https://brainly.in/question/5596504

Similar questions