Math, asked by princess2353, 1 year ago

2 sin inverse 4/5 + sin inverse 24/25

Answers

Answered by harendrachoubay
12

\sin ^{-1} \dfrac{24}{25} +\sin ^{-1} \dfrac{24}{25} = \sin ^{-1} \dfrac{336}{625}

Step-by-step explanation:

We have,

2\sin ^{-1} \dfrac{4}{5} +\sin ^{-1} \dfrac{24}{25}

To find, the value of 2\sin ^{-1} \dfrac{4}{5} +\sin ^{-1} \dfrac{24}{25} = ?

Using the inverse trigonometric identity,

2\sin ^{-1} x=\sin ^{-1} 2x\sqrt{1-x^2}

2\sin ^{-1} \dfrac{4}{5}

= \sin ^{-1} 2\times \dfrac{4}{5}\sqrt{1-(\dfrac{4}{5} )^2}

= \sin ^{-1} 2\times \dfrac{4}{5}\sqrt{1-\dfrac{16}{25}}

= \sin ^{-1} \dfrac{8}{5}\sqrt{\dfrac{25-16}{25}}

= \sin ^{-1} \dfrac{8}{5}\sqrt{\dfrac{9}{25}}

= \sin ^{-1} \dfrac{24}{25}

\sin ^{-1} \dfrac{24}{25} +\sin ^{-1} \dfrac{24}{25}

= 2\sin ^{-1} \dfrac{24}{25}

= \sin ^{-1} 2\times \dfrac{24}{25}\sqrt{1-(\dfrac{24}{25})^2}

= \sin ^{-1} \dfrac{48}{25}\sqrt{1-\dfrac{576}{625}}

= \sin ^{-1} \dfrac{48}{25}\sqrt{\dfrac{625-576}{625}}

= \sin ^{-1} \dfrac{48}{25}\sqrt{\dfrac{49}{625}}

= \sin ^{-1} \dfrac{48}{25}\times \dfrac{7}{25}

= \sin ^{-1} \dfrac{336}{625}

\sin ^{-1} \dfrac{24}{25} +\sin ^{-1} \dfrac{24}{25} = \sin ^{-1} \dfrac{336}{625}

Similar questions