2 sin x + cotx -cos ecx = 0
Answers
Answered by
3
Step-by-step explanation:
Given that:-
2 sin x + cotx -cosecx = 0
2 sin x+(cos x/sin x)-(1/sin x)=0
=>(2 sin² x+ cos x-1)/sin x=0
=>2 sin² x+ cos x-1=0×sin x
=>2 sin²x+cos x-1=0
=>2(1-cos²x)+cos x-1=0
=>2-2cos²x+cos x-1=0
=>-2 Cos²x+Cos x+1=0
=>2 Cos²x-cos x-1=0
=>2 Cos²x-2Cosx+Cosx-1=0
=>2Cos x(Cos x-1)+1(Cos x-1)=0
=>(2 Cos x+1)(Cos x-1)=0
=>2 cos x+1=0 or Cosx-1=0
=>2 Cos x=-1 or Cos x=1
=>Cos x=-1/2 or Cosx =1
Cos x=1
=>Cos x=Cos 0
=>X=0°
Cos x=-1/2
Cos x=Cos 120°
X=120°
If x lies between 0° to 90° then
X=0°
Used concept:-
Sin²A+Cos²A=1
Negative Values of Cos lies in 2nd and 3rd quadrants
Similar questions