2.sin2A = √3 , then prove that 3 cot square A - 2 sinA = 8
Answers
Answered by
1
Step-by-step explanation:
2sin2A=root3
sin2A=root3/2
sin2A=sin 60
2A=60
A=30
3cot^2 30-2sin30=3*3-2*1/2
=9-1=8 =RHS proved
Answered by
4
||✪✪ QUESTION ✪✪||
2.sin2A = √3 , then prove that 3 cot square A - 2 sinA = 8
|| ✰✰ ANSWER ✰✰ ||
→ 2sin2A = √3
→ sin2A = (√3/2)
→ sin2A = sin60°
→ 2A = 60°
→ A = 30°
now, we have to Prove , 3 cot²A - 2sinA = 8
Taking LHS,
→ 3 cot²A - 2sinA
→ 3*cot²30° - 2*sin30°
→ 3(√3)² - 2*(1/2)
→ 3*3 - 1
→ 9 - 1
→ 8 = RHS .
✪✪ Hence Proved ✪✪
Similar questions