Math, asked by Arjunraj2935, 10 months ago

2+ sin45+ cos45+ sec30- tan 30

Answers

Answered by mishalkiranr
0

Step-by-step explanation:

theefore \:  \sin(45)  =  \frac{1}{ \sqrt{2} }  \\  \cos(45)  =  \frac{1}{ \sqrt{2} } \\  \sec(30) =  \frac{2}{ \sqrt{3} } \\  \tan(30) =  \frac{1}{ \sqrt{3} }

Keep the above values in the sum

2 +  \frac{1}{ \sqrt{2} }  +  \frac{1}{ \sqrt{2} }  +  \frac{2}{ \sqrt{3} }  -  \frac{1}{ \sqrt{3} }

2 +  \frac{2}{ \sqrt{2} }  +  \frac{2}{ \sqrt{3} }  -  \frac{1}{ \sqrt{3} }

2 +  \frac{2 \sqrt{3}  + 2 \sqrt{2} }{ \sqrt{6} }  -  \frac{1}{ \sqrt{3} }

   \frac{2 \sqrt{6 }  + 2 \sqrt{3} + 2 \sqrt{2}  -  \sqrt{2}  }{ \sqrt{6} }

 \frac{2 \sqrt{6} + 2 \sqrt{3}  +  \sqrt{2}  }{ \sqrt{6} }

The future processe in the above photo

Attachments:
Answered by Anonymous
16

To Find:

2+ sin45+ cos45+ sec30- tan 30

Answer:

values of trigonometric ratios

  • sin45° =  \frac{1}{ \sqrt{2} }

  • cos 45° = \frac{1}{ \sqrt{2} }

  • sec 30°= \frac{2}{ \sqrt{3} }

  • tan 30°= \frac{1}{ \sqrt{3} }

2+ sin45+ cos45+ sec30- tan 30

 \longrightarrow 2 +  \frac{1}{ \sqrt{2} }  +  \frac{1}{ \sqrt{2} }  +  \frac{2}{ \sqrt{3} }  -  \frac{1}{ \sqrt{3} }

 \implies  \frac{2 \sqrt{6}  +  \sqrt{3} +  \sqrt{3}  + 4 - 2 }{ \sqrt{6} }

 \implies  \frac{2 \sqrt{6} + 2 \sqrt{3}  + 2 }{ \sqrt{6} }

hence , ans:

 \huge \tt \underline \orange {\frac{2 \sqrt{6} \:+ \:2 \sqrt{3}\:  + \:2 }{ \sqrt{6} }}

Similar questions