Math, asked by disha5158, 1 month ago

2(sin⁶theta+cos⁶theta)-3(sin⁴theta+cos⁴theta)+1=0​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Formula Used :-

\rm :\longmapsto\: {x}^{3} +  {y}^{3} =  {(x + y)}^{3} - 3xy(x + y)

\rm :\longmapsto\: {x}^{2} +  {y}^{2} =  {(x + y)}^{2} - 2xy

\rm :\longmapsto\: {sin}^{2}\theta  +  {cos}^{2}\theta  = 1

Consider, LHS

\rm :\longmapsto\:2( {sin}^{6}\theta  +  {cos}^{6}\theta ) - 3( {sin}^{4}\theta  +  {cos}^{4}\theta ) + 1

Consider,

\rm :\longmapsto\: {sin}^{6}\theta  +  {cos}^{6}\theta

\rm \:  =  \:  \:  {\bigg( {sin}^{2} \theta \bigg) }^{3} +  {\bigg( {cos}^{2} \theta \bigg) }^{3}

\rm \:  =  \:  \:  {\bigg( {sin}^{2} \theta  +  {cos}^{2} \theta \bigg) }^{3} -  3{sin}^{2}\theta  {cos}^{2} \theta ( {sin}^{2}\theta  +  {cos}^{2}\theta )

\rm \:  =  \:  \:  {(1)}^{3} - 3 {sin}^{2}\theta  {cos}^{2}\theta (1)

\rm \:  =  \:  \:  {1}- 3 {sin}^{2}\theta  {cos}^{2}\theta

Consider,

\rm :\longmapsto\: {sin}^{4}\theta  +  {cos}^{4}\theta

\rm \:  =  \:  \:  {\bigg( {sin}^{2} \theta \bigg) }^{2} +  {\bigg( {cos}^{2} \theta \bigg) }^{2}

\rm \:  =  \:  \:  {\bigg( {sin}^{2} \theta  +  {cos}^{2} \theta \bigg) }^{2} -  2{sin}^{2}\theta  {cos}^{2} \theta

\rm \:  =  \:  \:  1 -  2{sin}^{2}\theta  {cos}^{2} \theta

Now,

On substituting all these values in LHS, we get

\rm \:  =  \:  \:  2(1 -  3{sin}^{2}\theta {cos}^{2} \theta ) - 3(1 -  2{sin}^{2}\theta{cos}^{2} \theta )+ 1

\rm \:  =  \:  \:2 -  6{sin}^{2}\theta {cos}^{2} \theta ) -3 + 6{sin}^{2}\theta{cos}^{2} \theta + 1

\rm \:  =  \:  \: 0

Hence, Proved

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions