Physics, asked by Anonymous, 1 month ago

2.] Six small raindrops each of radius 1.5mm, come down with a terminal velocity of 6cm^ -1. They coalesce to form velocity of the bigger drop?​

Answers

Answered by PopularANSWERER007
319

࿊ Solution ࿊

  • Radius \: of \: each \: small \: drop \: r \:  = 1.5mm \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 0.15cm.
  • Terminal \: velocity \: for \: small \: drops \: Vt \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: = 6cm \: s {}^{ - 1}
  • Let \: the \: density \: of \: water \:  = ρ \\ and \: the \: density \: of \: air \:  = ρ'.

Then \:  Vt \:  =   \frac{2r {}^{2} }{9η} (ρ - ρ')g

6cm \: s {}^{ - 1}  \frac{2 \times (0.15) {}^{2} }{9η} (ρ - ρ')g \: ... \: (i)

When the six drops combine, let the radius of the bigger drop be R.

Then volume of bigger drop

= 6 × (Volume of a small drop)

➡ \:  \frac{4}{3} \pi R {}^{3}  = 6 \times  \frac{4}{3} \pi r {}^{3}

➡ \: R {}^{3} = 6r {}^{3}

➡ \:  R = (6) { \frac{}{} }^{ \frac{1}{3} }r

 \:  \: \:  \:  \:   = (6) { \frac{}{} }^{ \frac{1}{3} } (0.15)cm

Let the terminal velocity for this drop be VT.

Then  \: VT  =  \frac{2 \times R {}^{2} }{9η} (ρ - ρ')g

= >  \: VT  =  \frac{2 \times 6 {}^{ \frac{2}{3}}(0.15) {}^{2}  }{9η} (ρ -  ρ')g \: ... \: (ii)

Dividing equation (ii) by equation (i),

we \: get \:  \frac{VT}{6}  = (6) { \frac{}{} }^{ \frac{2}{3} }

VT \:  = 6   { \frac{}{} }^{ \frac{5}{3} } ms {}^{ - 1}

Answer :- \:  VT \:  = 19.81 \: ms {}^{ - 1}

Explanation:

@PopularANSWERER }

Answered by ITZURADITYATYAKING
14

Answer:

HOPE SO YOUR DOUBT IS CLEARED THANK YOU

Attachments:
Similar questions