Math, asked by deepakruprai, 10 months ago

2. Solve: (1) 4x - 3y =6; x + 3y = 9
(ii) 3x +2y = 14 ; x - 4y =-7​

Answers

Answered by Rohit18Bhadauria
4

(i)

Given:

Two equations in two variables:

  • 4x-3y=6----------------(1)
  • x+3y=9-----------------(2)

To Find:

Value of x and y

Solution:

On adding (1) and (2), we get

\sf{4x-3y=6}\\\sf{\:\:x+3y=9}\\\rule{59}{0.5}\\\sf{\:\:5x+\:\:0=15}

\rightarrow\sf{5x=15}

\rightarrow\sf{x=\dfrac{\cancel{15}}{\cancel{5}}}

\rightarrow\sf{x=3}

On putting value of x in (1), we get

4(3)-3y=6

➳ 12-3y=6

➳ -3y=6-12

➳ -3y=-6

➳ y=2

Hence, the value of x=3 and y=2.

\rule{180}{2}

(ii)

Given:

Two equations in two variables:

  • 3x+2y=14---------------(1)
  • x-4y= -7-----------------(2)

To Find:

Value of x and y

Solution:

On multiplying (1) by 2, we get

6x+4y=28---------------(3)

On adding (2) and (3), we get

\sf{\:\:\:x-4y=-7}\\\sf{\:6x+4y=28}\\\rule{61}{0.5}\\\sf{\:7x+\:\:0=21}

\rightarrow\sf{7x=21}

\rightarrow\sf{x=\dfrac{\cancel{21}}{\cancel{7}}}

\rightarrow\sf{x=3}

On putting value of x in (2), we get

3-4y= -7

➳ -4y= -7-3

➳ -4y= -10

\rightarrow\sf{y=\dfrac{\cancel{-10}}{\cancel{-4}}}

\rightarrow\sf{y=\dfrac{5}{2}}

Hence, the value of x=3 and y=5/2.

Similar questions