Math, asked by kumarnikhil18533, 10 months ago

(2) solve 2x +3y=11 and 2x - 4y =-24 and hence find the value of 'm' for which y=mx + .3

Answers

Answered by varunsharma4200
12

Answer:

2x+3y = 11

2x-4y = 24

subtracting them we get

y= -13/7

Now put the value of y in any equation

2x+3* -13/7=11

2x-39/7=11

2x=11+39/7

2x=116/7

x=58/7

Now find the value of m

y = mx +3

-13/7 =m*58/7 + 3

- 13/7 - 3 =58m/7

- 34/7 = 58m/7

7 and 7 get cancelled

Now we get

m = -34/58

m = - 34/58

m = -17/29

I got the answer correct with full explaination please mark it as brainliest

Answered by sourya1794
27

{\bold{\pink{\underline{\red{So}\purple{lut}\green{ion}\orange{:-}}}}}

  • \rm\:2x+3y=11\:..........................(i)

  • \rm\:2x-4y=-24\:.......................(ii)

Now,

From eq (i)

\rm\:2x+3y=11

\rm\longrightarrow\:2x=11-3y

\rm\longrightarrow\:x=\dfrac{11-3y}{2}\:.................(iii)

Putting the value of x in eq (ii)

\rm\:2x-4y=-24

\rm\longrightarrow\:\cancel{2}\bigg(\dfrac{11-3y}{\cancel{2}}\bigg)-4y=-24

\rm\longrightarrow\:11-3y-4y=-24

\rm\longrightarrow\:11-7y=-24

\rm\longrightarrow\:-7y=-24-11

\rm\longrightarrow\:-7y=-35

\rm\longrightarrow\:y=\cancel\dfrac{-35}{-7}

\rm\longrightarrow\:y=5

Putting the value of y in eq (iii)

\rm\:x=\dfrac{11-3y}{2}

\rm\longrightarrow\:x=\dfrac{11-3\times\:5}{2}

\rm\longrightarrow\:x=\dfrac{11-15}{2}

\rm\longrightarrow\:x=\cancel\dfrac{-4}{2}

\rm\longrightarrow\:x=-2

According to the question,

\rm\:y=mx+3

\rm\longrightarrow\:5=m\times\:(-2)+3

\rm\longrightarrow\:5=-2m+3

\rm\longrightarrow\:5-3=-2m

\rm\longrightarrow\:2=-2m

\rm\longrightarrow\:\cancel\dfrac{-2}{2}=m

\rm\longrightarrow\:-1=m

\rm\longrightarrow\:m=-1

Hence,the value of m will be -1,

Similar questions