Math, asked by tarshan17, 8 months ago

2. Solve:
a) (V2 + 5) (V2 - 6)
-1
-1
b) [(27)3 x (81) 2 ] = [(36)6 (36)
Given:Fig​

Attachments:

Answers

Answered by Isighting12
6

Answer:

a)

(\sqrt{2} + 5)(\sqrt{2} - 6)\\\\= \sqrt{2}(\sqrt{2} - 6) + 5(\sqrt{2} - 6)\\\\= 2 - 6\sqrt{2} + 5 \sqrt{2} - 30\\\\= -28 - \sqrt{2}

b)

[(27)^{\frac{1}{3}} * (81)^{\frac{-1}{2}}] ÷ [(36)^{\frac{1}{6}} * (36)^{\frac{-1}{3}}]

= [(3^{3})^{\frac{1}{3}} * (9^{2})^{\frac{-1}{2}}] ÷ [(6^{2} )^{\frac{1}{6}} * ( 6^{2})^{\frac{-1}{3}}]

= [(3) * (9)^{-1}] ÷ [(6)^{\frac{1}{3}} * ( 6)^{\frac{-2}{3}}]

= [(3) * (3^{2})^{-1}] ÷ [(6)^{\frac{1}{3} + \frac{(-2)}{3}}]

= [(3) * (3)^{-2}] ÷ [(6)^{\frac{1 - 2}{3}}]

= [(3)^{1 + (-2)}] ÷ [(6)^{\frac{-1}{3}}]

= \frac{[(3)^{-1}]}{[(6)^{\frac{-1}{3}}]}

= \frac{[(3)^{-1}]}{[(2 * 3)^{\frac{-1}{3}}]}

= \frac{[(3)^{-1}]}{[(2)^{\frac{-1}{3}} * (3)^{\frac{-1}{3}}]}

= \frac{2^{\frac{1}{3}} * 3^{\frac{1}{3}}}{3^{1}}

=2^{\frac{1}{3}} * 3^{\frac{1}{3} - 1}

=2^{\frac{1}{3}} * 3^{\frac{1- 3}{3}}

=2^{\frac{1}{3}} * 3^{\frac{-2}{3}}

=\frac {2^{\frac{1}{3}}} {3^{\frac{2}{3}}}

=(\frac {2} {3^{2}})^{\frac{1}{3}

=(\frac {2} {9 })^{\frac{1}{3}

= \sqrt[3]{\frac{2}{9} }

I hope it helps...........

Similar questions