Math, asked by reshmadhane57, 3 months ago

2. Solve for X: 2
 \sqrt{2x + 9}   - \sqrt{x - 4}  = 3

(​

Answers

Answered by mathdude500
2

\large\underline\blue{\bold{Given \:  Question :-  }}

\bf \: Solve \:  for  \: x: \sqrt{2x + 9} - \sqrt{x - 4} = 3</p><p>

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\bf \:  ⟼ \sqrt{2x + 9} - \sqrt{x - 4} = 3

\sf \:  ⟼\sqrt{2x + 9}  \:  =  \: \sqrt{x - 4}  \:  + 3

☆ On squaring both sides, we get

\sf \:  ⟼2x + 9 =  { \bigg(3 +  \sqrt{x - 4} \bigg) }^{2}

\sf \:  ⟼2x +  \cancel9 =  \cancel9 + x - 4 + 6 \sqrt{x - 4}

\sf \:  ⟼x + 4 = 6 \sqrt{x - 4}

☆ On squaring both sides, we get

\sf \:  ⟼ {(x + 4)}^{2}  = 36(x - 4)

\sf \:  ⟼ {x}^{2}  + 16 + 8x = 36x - 144

\sf \:  ⟼ {x}^{2}  - 28x + 160 = 0

\sf \:  ⟼ {x}^{2}  - 20x - 8x + 160 = 0

\sf \:  ⟼x(x - 20) - 8(x - 20) = 0

\sf \:  ⟼(x - 20)(x - 8) = 0

\bf\implies \:x \:  = 20 \: or \: x \:  =  \: 8

─━─━─━─━─━─━─━─━─━─━─━─━─

Verification :-

Case :- 1 When x = 20

Consider LHS

\sf \:  ⟼\sqrt{2x + 9} - \sqrt{x - 4}

\sf \:  ⟼\sqrt{2 \times 20 + 9} - \sqrt{20 - 4}

\sf \:  ⟼ \sqrt{49}  -  \sqrt{16}

\sf \:  ⟼7 - 4

\sf \:  ⟼3

\bf \:  ➦ LHS = RHS

\bf \:  ⟼  \boxed{\bf \: Hence, Verified }✔

─━─━─━─━─━─━─━─━─━─━─━─━─

☆Case :- 2 When x = 8

☆Consider LHS

\bf \:  ⟼ \sqrt{2x + 9} - \sqrt{x - 4}

\sf \:  ⟼\sqrt{2 \times 8 + 9} - \sqrt{8 - 4}

\sf \:  ⟼ \sqrt{25}  -  \sqrt{4}

\sf \:  ⟼5 - 2

\sf \:  ⟼3

\bf \:  ➦ LHS = RHS

\bf \:  ⟼ \boxed{\bf \:  Hence, Verified} ✔

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, x \:  =  \: 20 \: or \: 8}}}}

Similar questions