Math, asked by saikeerthisaik51, 4 months ago

2) Solve the following quachatic polyro
mials gaphically x2-x-6

Answers

Answered by amansharma264
29

EXPLANATION.

Quadratic equation,

⇒ F(x) = x² - x - 6.

As we know that,

Factorizes the equation into middle term splits, we get.

⇒ y = x² - x - 6.

⇒ x² - x - 6 = 0.

⇒ x² - 3x + 2x - 6 = 0.

⇒ x(x - 3) + 2(x - 3) = 0.

⇒ (x + 2)(x - 3) = 0.

⇒ x = -2 and x = 3.

Put the value of x = -2 in equation, we get.

⇒ y = (-2)² - (-2) - 6.

⇒ y = 4 + 4 - 6.

⇒ y = 8 - 6.

⇒ y = 2.

Their Co-ordinates = (0,2).

Put the value of x = 3 in equation, we get.

⇒ y = (3)² - (3) - 6.

⇒ y = 9 - 3 - 6.

⇒ y = 9 - 9.

⇒ y = 0.

Their Co-ordinates = (3,0).

Put the value of x = 0 in equation, we get.

⇒ y = (0)² - (0) - 6.

⇒ y = -6.

Their Co-ordinates = (0,-6).

Attachments:
Answered by mathdude500
1

Solve graphically :-

\tt \ \: :  ⟼  {x}^{2}  - x - 6

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\tt \ \: :  ⟼  \: Let \: y \:  =  {x}^{2}  - x - 6

\large\underline{\bold{❥︎Step :- 1 }}

☆ Point of intersection with x - axis.

☆ We know, on x - axis, y = 0

\tt\implies \: {x}^{2}  - x - 6 = 0

\tt \ \: :  ⟼  {x}^{2}  - 3x + 2x - 6 = 0

\tt \ \: :  ⟼  x(x - 3) + 2(x - 3) = 0

\tt \ \: :  ⟼ (x - 3)(x + 2) = 0

\tt \ \: :  ⟼ x - 3 = 0 \: or \: x + 2 = 0

\tt\implies \:x = 3 \: or \: x \:  =  - 2

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 3 & \sf 0 \\ \\ \sf  - 2 & \sf 0 \end{array}} \\ \end{gathered}

\large\underline{\bold{❥︎Step :- 2 }}

☆ To find the vertices of given quadratic polynomial

\tt \ \: :  ⟼ y =  {x}^{2}  - x - 6

\tt \ \: :  ⟼ differentiate \: w.r.t. \: x \: we \: get

\tt \ \: :  ⟼ \dfrac{dy}{dx}  = 2x - 1

\tt \ \: :  ⟼ for \: turning \: point \: \:  \:  \:  \dfrac{dy}{dx}  = 0

\tt\implies \:2x - 1 = 0

\tt\implies \:x = \dfrac{1}{2}

\tt \ \: :  ⟼  \therefore \: y \:  =  {(\dfrac{1}{2}) }^{2}  - \dfrac{1}{2}  - 6

\tt\implies \:y = \dfrac{1}{4}   - \dfrac{1}{2}  - 6

\tt\implies \:y = \dfrac{1 - 2 - 24}{4}

\tt\implies \:y =  - \dfrac{25}{4}

\tt \ \: :  Hence,  \: vertex \: is \: (\dfrac{1}{2}  , - \dfrac{25}{4}  )

➢ Now draw a graph using the points

➢ See the attachment graph.

➢ Solution is x = 3 or x = - 2

Attachments:
Similar questions