Math, asked by StarTbia, 1 year ago

2. Solve the following quadratic equations using quadratic formula

Attachments:

Answers

Answered by Shubhendu8898
3

Given,

x+\frac{1}{x}=2\frac{1}{2}\\\\\frac{x^{2}+1}{x}=\frac{5}{2}\\\\2x^{2}+2=5x\\\\2x^{2}-5x+2=0\\ \\2x^{2}-4x-x+2=0\\\\2x(x-2)-1(x-2)=0\\\\(x-2)(2x-1)=0\\\\Hence,\\x=2\;\;or\;\;x=\frac{1}{2}

Attachments:
Answered by Robin0071
0
solution :-

given by:-
x +  \frac{1}{x}  = 2 \frac{1}{2}  \\  \frac{ {x}^{2} + 1 }{x}  =  \frac{5}{2}  \\  2{x}^{2}  + 2 - 5x = 0 \\ 2 {x}^{2}  - 5x + 2 = 0 \\a = 2 \\  \: b =  - 5 \\  \: c  = 2 \\ by \: formula \\  \frac{ - b( +  - ) \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \frac{5( +  - ) \sqrt{25 - 4 \times 2 \times 2} }{2 \times 2}  \\  \frac{5( +  - ) \sqrt{25 - 16} }{4}  \\  \frac{5( +  - ) \sqrt{9} }{4}  \\  \frac{5( +  - )3}{4}  \\ x =  \frac{8}{4}  = 2 \\ x =  \frac{2}{4}  =  \frac{1}{2}  \\
☆i hope its help☆
Similar questions