2. Solve the following quadratic equations using quadratic formula
Attachments:
Answers
Answered by
1
a(x² + 1) = x(a² + 1)
ax² + a = a²x + x
ax² - (a² + 1)x + a = 0
where, a = a , b = -(a² + 1) , c = a
D = b² - 4ac
D = [-(a² + 1)]² - 4(a)(a)
D = a⁴ + 1 + 2a² - 4a²
D = a⁴ + 1 - 2a²
√D = √(a² - 1)²
√D = (a² - 1)
x =
x =
taking (+ve).
x =
x =
taking (-ve).
x =
x =
x =
Answered by
0
Given Quadratic equation is
a( x² + 1 ) = x( a² + 1 )
=>ax² + a - ( a² + 1 )x = 0
=> ax² - ( a² + 1 )x + a = 0 Compare this
with Ax² + Bx + C = 0 we get ,
A = a , B = -( a² + 1 ) , C = a ,
Discreminant ( D ) = B² - 4AC
= [ -( a² + 1 ) ]² - 4 × a × a
= ( a² + 1 )² - 4a²
= ( a² )² + 2a² + 1 - 4a²
= ( a² )² - 2a² + 1
D = ( a² - 1 )²
By Quadratic Formula :
x = [ -B± √D ]/2A
x = {- [-(a² + 1 ) ] ± √( a² - 1 )² }/( 2× a)
= [ a² + 1 ± ( a² - 1 ) /2a
Now ,
x = [a²+1+a²-1]/2a or x = [a²+1-a²+1]/2a
x = 2a²/2a Or x = 2/2a
x = a Or x = 1/a
••••
a( x² + 1 ) = x( a² + 1 )
=>ax² + a - ( a² + 1 )x = 0
=> ax² - ( a² + 1 )x + a = 0 Compare this
with Ax² + Bx + C = 0 we get ,
A = a , B = -( a² + 1 ) , C = a ,
Discreminant ( D ) = B² - 4AC
= [ -( a² + 1 ) ]² - 4 × a × a
= ( a² + 1 )² - 4a²
= ( a² )² + 2a² + 1 - 4a²
= ( a² )² - 2a² + 1
D = ( a² - 1 )²
By Quadratic Formula :
x = [ -B± √D ]/2A
x = {- [-(a² + 1 ) ] ± √( a² - 1 )² }/( 2× a)
= [ a² + 1 ± ( a² - 1 ) /2a
Now ,
x = [a²+1+a²-1]/2a or x = [a²+1-a²+1]/2a
x = 2a²/2a Or x = 2/2a
x = a Or x = 1/a
••••
Similar questions