2. Solve
x log10 x 1.2
by Newton-Raphson method correct to three decimal places when root liess
between 2&3 .
Answers
Given:
xlog(x) - 1.2 = 0
Root lies between 2 and 3
To find:
Find the root by Newton-Raphson method.
Solution:
Here xlog(x) - 1.2 = 0
Let f(x) = xlog(x) - 1.2
∴ f'(x) = log(x) + 1
f(2) = -0.5979
f(3) = 0.2314
Here f(2) = -0.5979 < 0 and f(3) = 0.2314 > 0
∴ Root lies between 2 and 3
x₀ = (2 + 3) / 2 = 2.5
x₀ = 2.5
1st Iteration:
f(x₀) = f(2.5) = 2.5log(2.5) - 1.2 = -0.2051
f′(x₀) = f′(2.5) = log(2.5) + 1 = 1.3979
x₁ = x₀ - f(x₀) / f'(x₀)
x₁ = 2.5- (-0.2051) / 1.3979
x₁ = 2.6468
2nd Iteration:
f(x₁) = f(2.6468) = 2.6468log(2.6468) - 1.2 = -0.0812
f′(x₁) = f′(2.6468) = log(2.6468) + 1 = 1.4227
x₂ = x₁ - f(x₁) / f'(x₁)
x₂ = 2.6468- (-0.0812) / 1.4227
x₂=2.7038
3rd Iteration:
f(x₂) = f(2.7038) = 2.7038log(2.7038) - 1.2 = -0.032
f′(x₂) = f′(2.7038) = log(2.7038) + 1 = 1.432
x₃ = x₂ - f(x₂) / f'(x₂) = 2.7262
4th Iteration:
f(x₃) = f(2.7262) = 2.7262log(2.7262) - 1.2 = -0.0126
f′(x₃) = f′(2.7262) = log(2.7262) + 1 = 1.4356
x₄ = x₃ - f(x₃) / f'(x₃) = 2.735
5th Iteration:
f(x₄) = f(2.735) = 2.735log(2.735) - 1.2 = -0.005
f′(x₄) = f′(2.735) = log(2.735) + 1 = 1.4369
x₅ = x₄ - f(x₄) / f'(x₄) = 2.7384
6th Iteration:
f(x₅) = f(2.7384) = 2.7384log(2.7384) - 1.2 = -0.002
f′(x₅) = f′(2.7384) = log(2.7384) + 1 = 1.4375
x₆ = x₅ - f(x₅) / f'(x₅) = 2.7398
7th Iteration:
f(x₆) = f(2.7398) = 2.7398log(2.7398) - 1.2 = -0.0008
f′(x₆) = f′(2.7398) = log(2.7398) + 1 = 1.4377
x₇ = x₆ - f(x₆) / f'(x₆) = 2.7403
8th Iteration:
f(x₇) = f(2.7403) = 2.7403log(2.7403) - 1.2 = -0.0003
f′(x₇) = f′(2.7403) = log(2.7403) + 1 = 1.4378
x₈ = x₇ - f(x₇) / f'(x₇) = 2.7405
Approximate root of the equation xlog(x) - 1.2 = 0 is 2.740, after 8 iterations
it was realy nice explanation