Math, asked by NORRIX, 18 days ago

2/(sqrt(5) + sqrt(3)) + 1/(sqrt(3) + sqrt(2)) - 3/(sqrt(5) + sqrt(2))​

Answers

Answered by aditichandeliya
1

Answer:

0

Step-by-step explanation:

2/\sqrt{5}+\sqrt{3}  + 1/

    ↓                  ↓               ↓

    x                   y               z  (let)

x+y-z-----(1)

x=2/\sqrt{5} +\sqrt{3}

x=2/\sqrt{5} +\sqrt{3}  * \sqrt{5} -\sqrt{3}  / \sqrt{5} -\sqrt{3}

[a^{2} +b^{2} =(a+b)(a-b)]

x=(\sqrt{5} -\sqrt{3} ) / 2

x=\sqrt{5} -\sqrt{3}

Now,

y=1/\sqrt{3} +\sqrt{2}

y=1/\sqrt{3} +\sqrt{2}  * \sqrt{3} -\sqrt{2} /\sqrt{3} -\sqrt{2} \\y=\sqrt{3} -\sqrt{2}

And,

z=3/\sqrt{5} +\sqrt{2} \\z=3/\sqrt{5} +\sqrt{2}  * \sqrt{5} -\sqrt{2} /\sqrt{5} -\sqrt{2} \\z=\sqrt{5} -\sqrt{2}

Put the values of x,y and z in equation (1)

x+y-z=\sqrt{5} -\sqrt{3} +\sqrt{3} -\sqrt{2} -\sqrt{5} +\sqrt{2} \\x+y-z=0 Ans.

Similar questions