Physics, asked by StrongGirl, 8 months ago

2 strings x and y of the same material same length have a frequency as 450Hz and 200 Hz. Find the ratio of their tension (Tx:Ty).

Answers

Answered by shadowsabers03
3

The frequency of a string is given by,

\sf{\longrightarrow \nu=\dfrac{1}{2L}\sqrt{\dfrac{T}{\mu}}}

In case of strings of same material and length,

\sf{\longrightarrow \nu\propto\sqrt T}

\sf{\longrightarrow T\propto \nu^2}

According to the question, ratio of frequencies of the string is,

\sf{\longrightarrow \dfrac{\nu_x}{\nu_y}=\dfrac{450}{200}}

\sf{\longrightarrow \dfrac{\nu_x}{\nu_y}=\dfrac{9}{4}}

Therefore, ratio of their tensions is,

\sf{\longrightarrow \dfrac{T_x}{T_y}=\left(\dfrac{\nu_x}{\nu_y}\right)^2}

\sf{\longrightarrow\underline{\underline{\dfrac{T_x}{T_y}=\dfrac{81}{16}}}}

Similar questions