Math, asked by rajshreeanandsinha, 2 months ago

2(t+1)/3 - t-2/4 = t/2 + 1/2​

Answers

Answered by Flaunt
12

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf \longmapsto \dfrac{2(t + 1)}{3}  -  \dfrac{t - 2}{4}  =  \dfrac{t}{2}  +  \dfrac{1}{2}

Taking LCM both sides :

LCM of 3 & 4 is 12

\sf \longmapsto \dfrac{4(2t + 2) - 3(t - 2)}{12}  =  \dfrac{t + 1}{2}

\sf \longmapsto  \dfrac{8t + 8 - 3t + 6}{12}  =  \dfrac{t + 1}{2}

Now,cross multiply to both sides:

\sf \longmapsto2(8t - 3t + 8 + 6) = 12(t + 1)

\sf \longmapsto2(5t + 14) = 12(t + 1)

\sf \longmapsto10t + 28 = 12t + 12

\sf \longmapsto28 - 12 = 12t - 10t

\sf \longmapsto16 = 2t

\sf \longmapsto \:t = 16 \div 2 = 8

\sf\large \boxed{ \bold{t = 8}}

Check:

\sf \longmapsto2(5t + 14) = 12(t + 1)

 \sf \longmapsto  2(5 \times 8 + 14)

\sf \longmapsto2(40 + 14)

\sf \longmapsto2(54) = 108

Taking RHS

\sf \longmapsto12(t + 1)

\sf \longmapsto12(8 + 1)

\sf \longmapsto12 \times 9 = 108

LHS=RHS(Verified)

Similar questions