Physics, asked by paramvaibhav38, 8 months ago

2. Taking the mass of earth equal to 6 x 10^24 kg and
its radius equal to 6.4 x 10^6 m, calculate the value
of acceleration due to gravity at a height of
2000 km above the earth surface. Take
G = 6:7 x 10-11 N m² kg-2.​

Answers

Answered by Anonymous
29

Given:-

  • Mass of earth = 6 × 10²⁴

  • Radius of earth = 6.4 × 10⁶

  • Height given = 200km

  • G = 6.7 × 10¹¹

To Find:-

  • The accceleration due to gravity 2000km above the surface of the earth.

Formulae used:-

  • g = Gm/(r+ h )²

Where

  • g = Acceleration due to gravity
  • m = Mass
  • r = Radius
  • h = Height

Now,

\implies\sf{ g_{h} = \dfrac{GM}{(r+h)^2}}

\implies\sf{g_{h}  = \dfrac{6.7\times{10^{-11}}\times{6\times{10^{24}}}}{( 6.4\times{10^6} + 2000)^2}}

\implies\sf{g_{h}  = \dfrac{6.7\times{10^{-11}}\times{6\times{10^{24}}}}{( 6.4\times{10^6} + 2.0\times{10^6})}}

\implies\sf{ g_{h} = \dfrac{6.7\times{60}\times{ 10^{-11 + 24}}}{ ((6.4 +2)\times{10^6})^2}}

\implies\sf{ g _{h} = \dfrac{402\times{10^{13}}}{70.56\times{10^{12}}}}

\implies\sf{ g_{h} = \dfrac{402}{70.56}}

\implies\sf{ g_{h} = 5.69m/s²}

Therefore,. The Accceleration due to gravity at the height above the 2000km is 5.69m/.

Similar questions