Math, asked by bharatirishil, 1 month ago

2+tan^2(A)+cot^2(A) = 1/sin^2(A)-sin^4(A)

Answers

Answered by PrettyLittleBxrbie
4

hope this helps you mate

Attachments:
Answered by velpulaaneesh123
11

Answer:

\green{\huge{True}}

Step-by-step explanation:

2+\tan ^2\left(a\right)+\cot ^2\left(a\right)=\frac{1}{\sin ^2\left(a\right)-\sin ^4\left(a\right)}}

=\frac{\cos ^4\left(a\right)+\sin ^4\left(a\right)+2\cos ^2\left(a\right)\sin ^2\left(a\right)}{\cos ^2\left(a\right)\sin ^2\left(a\right)}

=\frac{\left(\cos ^2\left(a\right)+\sin ^2\left(a\right)\right)^2}{\cos ^2\left(a\right)\sin ^2\left(a\right)}

=\frac{\left(\cos ^2\left(a\right)+\sin ^2\left(a\right)\right)^2}{\cos ^2\left(a\right)\sin ^2\left(a\right)}

=\frac{1}{\sin ^2\left(a\right)\cos ^2\left(a\right)}

=\frac{1}{\left(1-\sin ^2\left(a\right)\right)\sin ^2\left(a\right)}

\Rightarrow \mathrm{True}

Hence Proved.

\orange{\huge{\boxed{\mathfrak{Hope \:its\:help\:You}}}}

Similar questions