Math, asked by shrutikathakur56, 6 months ago

2 tan² 45° + cos²30° - sin²60°​

Answers

Answered by MrToxic12
3

Step-by-step explanation:

The required value of the expression is 2.

Step-by-step explanation:

Consider the provided information.

\mathrm{2\tan ^2(45^{\circ \:})+\cos ^2(30^{\circ \:})-\sin ^2(60^{\circ \:})}2tan

2

(45

)+cos

2

(30

)−sin

2

(60

)

Substitute \tan (45^{\circ \:})=1, \cos (30^{\circ \:})=\frac{\sqrt{3}}{2}, \sin (60^{\circ \:})=\frac{\sqrt{3}}{2}tan(45

)=1,cos(30

)=

2

3

,sin(60

)=

2

3

in above expression.

\mathrm{2\tan ^2(45^{\circ \:})+\cos ^2(30^{\circ \:})-\sin ^2(60^{\circ \:})}=2\cdot \:1^2+(\frac{\sqrt{3}}{2})^2-(\frac{\sqrt{3}}{2})^22tan

2

(45

)+cos

2

(30

)−sin

2

(60

)=2⋅1

2

+(

2

3

)

2

−(

2

3

)

2

=2+\frac{3}{4}-\frac{3}{4}=2+

4

3

4

3

=2=2

Hence, the required value of the expression is 2.

Hope it's Helpful!!!

Answered by Anonymous
6

Step-by-step explanation:

 \red{answer} \:  above

Attachments:
Similar questions