2 tan²60° + cos²30° – sin²60° - 6.
help
Answers
Answer:
0
Step-by-step explanation:
FIRST WRITE THE VALUES OF TAN60= √3 AND COS 30= √3/2 , SIN60= √3/2, SO, SUBSTITUTE THESE ALL VALUES IN THAT EQUATION.
→2 tan²60° + cos²30° – sin²60° - 6.
- →2 (√3)²+(√3/2)²-(√3/2)²-6
→2X3 +3/4-3/4-6
→6+0-6
→0
HOPE YOU UNDERSTOOD
Solution :-
2tan²60° + cos²30° - sin²60° - 6
As we know that,
tan 60° = √3 , cos 30° = √3/2 ,
sin 60° = √3/2
Subsitute the required values,
2(√3)² + (√3/2)² - (√3/2)² - 6
2 * 3 + 3/4 - 3/4 - 6
6 + 3/4 - 3/4 - 6
By taking LCM we get,
24 + 3 - 3 - 24 / 4
24 - 24/4
0/4
= 0
Hence, The answer is 0
Trigonometric ratios :-
Sin0° = 0
Sin 30° = 1/2
Sin 45° = 1/√2
Sin 60° = √3/2
Sin 90° = 1
Cos 0° = 1
Cos 30° = √3/2.
Cos 45° = 1/√2
Cos 60° = 1/2
Cos 90° = 0
Tan 0° = 0
Tan 30° = 1√3
Tan 45° = 1
Tan 60° = √3
Tan 90° = infinity
Cot 0° = infinity
Cot 30° = √3
Cot 45° = 1
Cot 60° = 1√3
Cot 90° = 0
Cosec 0° = infinity
Cosec 30° = 2
Cosec 45° = √2
Cosec 60° = 2√3
Cosec 90° = 1
Sec 0° = 1
Sec 30° = 2/√3
Sec 45° √2
Sec 60° = 2
Sec 90° = infinity