Math, asked by rohithsajeev1, 2 months ago

2 tan²60° + cos²30° – sin²60° - 6.
help ​

Answers

Answered by BEJR18
0

Answer:

0

Step-by-step explanation:

FIRST WRITE THE VALUES OF TAN60= √3 AND COS 30= √3/2 , SIN60= √3/2, SO, SUBSTITUTE THESE ALL VALUES IN THAT EQUATION.

→2 tan²60° + cos²30° – sin²60° - 6.

  • →2 (√3)²+(√3/2)²-(√3/2)²-6

→2X3 +3/4-3/4-6

→6+0-6

→0

HOPE YOU UNDERSTOOD

Answered by Anonymous
11

Solution :-

2tan²60° + cos²30° - sin²60° - 6

As we know that,

tan 60° = √3 , cos 30° = √3/2 ,

sin 60° = √3/2

Subsitute the required values,

2(√3)² + (√3/2)² - (√3/2)² - 6  .

2 * 3 + 3/4 - 3/4 - 6

6 + 3/4 - 3/4 - 6

By taking LCM we get,

24 + 3 - 3 - 24 / 4

24 - 24/4

0/4

= 0

Hence, The answer is 0

Trigonometric ratios :-

Sin0° = 0

Sin 30° = 1/2

Sin 45° = 1/√2

Sin 60° = √3/2

Sin 90° = 1

Cos 0° = 1

Cos 30° = √3/2.

Cos 45° = 1/√2

Cos 60° = 1/2

Cos 90° = 0

Tan 0° = 0

Tan 30° = 1√3

Tan 45° = 1

Tan 60° = √3

Tan 90° = infinity

Cot 0° = infinity

Cot 30° = √3

Cot 45° = 1

Cot 60° = 1√3

Cot 90° = 0

Cosec 0° = infinity

Cosec 30° = 2

Cosec 45° = √2

Cosec 60° = 2√3

Cosec 90° = 1

Sec 0° = 1

Sec 30° = 2/√3

Sec 45° √2

Sec 60° = 2

Sec 90° = infinity

Similar questions