Math, asked by warmachine3551, 9 months ago

2.The 7th term of an ap is 32 and its 13 term is 62 find the AP

Answers

Answered by violaalva
2

Answer:

a + 6d=32  - eq 1

a+ 12d=62  - eq 2

by solving both equation we get

d = 5 & a= 2

Then A.P will be as follows:

2,7,12,17,22,27,32,37,42,47,52...................

Step-by-step explanation:

Answered by InfiniteSoul
7

\sf{\underline{\boxed{\large{\blue{\mathsf{Solution}}}}}}

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • 7th term of AP = 32
  • 13th term of AP = 62

_______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • AP = ????

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

\sf{\red{\boxed{\bold{t_n = a + ( n - 1)d }}}}

\sf\implies 32 = a + ( 7 - 1 )d

\sf\implies 32 = a + 6d

\sf{\bold{\orange{\underline{\underline{ a+ 6d = 32 }}}}}----- ( i )

\sf\implies 62 = a + ( 13 - 1 )d

\sf\implies 62 = a + 12d

\sf{\bold{\orange{\underline{\underline{ a+ 12d = 62 }}}}}----- ( ii )

  • Subtracting eq i from ii

\sf\longrightarrow a + 12d - a - 6d = 62 - 32

\sf\longrightarrow 6d = 30

\sf\longrightarrow d = \dfrac{30}{6}

\sf\longrightarrow d = 5

\sf{\blue{\boxed{\bold{d = 5 }}}}

  • putting value of d in eq i

\sf\longrightarrow a + 6d = 32

\sf\longrightarrow a + 6\times 5 = 32

\sf\longrightarrow a + 30 = 32

\sf\longrightarrow a = 32 - 30

\sf\longrightarrow a = 2

\sf{\blue{\boxed{\bold{a = 2 }}}}

  • Finding AP

\sf\leadsto 2 , 2 + 5 , 2 + 10 , 2 + 15 , 2 + 20 , 2 + 25 , 2 + 30 .......

\sf\leadsto 2 , 7 , 12 , 17 , 22 , 27 , 32......

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • AP = 2 , 7 , 12 , 17 , 22 , 27...........
Similar questions