Physics, asked by vidushisingh1563, 7 months ago

2.
The average value of the voltage V for a complete cycle that varies with time t as shown below is:



Kindly answer​

Attachments:

Answers

Answered by nirman95
14

Given:

The voltage V for a complete cycle that varies with time t as shown in the graph.

To find:

Average voltage .

Calculation:

General expression of average voltage for an alternating circuit is given as follows:

 \boxed{\: V_{avg} =  \dfrac{  \displaystyle\int V \: dt}{ \displaystyle \int \: dt} }

Now , as per the graph :

  • V = V_(0) when 0 < t < T/2

  • V = 0 when T/2 < t < T

So , continuing with the integration:

 =  &gt; \: V_{avg} =  \dfrac{  \displaystyle\int_{0}^{T}V  \: dt}{ \displaystyle \int_{0}^{T} \: dt}

 =  &gt; \: V_{avg} =  \dfrac{  \displaystyle\int_{0}^{ \frac{T}{2} }(V_{0} \: dt )+  \int_{ \frac{T}{2}}^{T}(0 \: dt)}{ \displaystyle \int_{0}^{T} \: dt}

 =  &gt; \: V_{avg} =  \dfrac{  \displaystyle\int_{0}^{ \frac{T}{2} }(V_{0} \: dt )+  0}{ \displaystyle \int_{0}^{T} \: dt}

 =  &gt; \: V_{avg} =  \dfrac{  \displaystyle\int_{0}^{ \frac{T}{2} }(V_{0} \: dt )}{ \displaystyle \int_{0}^{T} \: dt}

 =  &gt; \: V_{avg} =  \dfrac{  \displaystyle \: V_{0} \: \int_{0}^{ \frac{T}{2} } dt }{ \displaystyle \int_{0}^{T} \: dt}

 =  &gt; \: V_{avg} =  \dfrac{ \: V_{0} (\frac{T}{2}  - 0)}{ T - 0}

 =  &gt; \: V_{avg} =  \dfrac{ \: V_{0} (\frac{T}{2} )}{ T }

 =  &gt; \: V_{avg} =  \dfrac{ \: V_{0} }{ 2 }

So, final answer is:

 \boxed{ \bf{ \large{\: V_{avg} =  \dfrac{ \: V_{0} }{ 2 } }}}

Similar questions