Math, asked by nithun2007, 1 month ago

2. The central angle of the sector of a circle is 45° and its radius is 14cm. Find
the length of the arc, area and the perimeter of the sector.​

Answers

Answered by vpvp197
23

 \huge{ \sf{ \underbrace{ \underline{given}}}}

The central angle of the sector of a circle is

45° and its radius is 14cm

 \huge{ \sf{ \underbrace{ \underline{to \: find}}}}

Length of arc = ?

Area and Perimeter of sector = ?

 \huge{ \sf{ \underbrace{ \underline{answer}}}}

radius \: of \: sector \:  = 14cm \\ central \: angle \: of \: sector = 45 \\  \implies \: length \: of \: arc =   \frac{ \theta}{360}  \times 2\pi \: r \\  \implies \:  \frac{45}{360}   \times 2\pi \: r \\  \implies \:  \frac{45}{360}  \times 14 \\  \implies \:   \frac{1}{8}  \times 2 \times  \frac{22}{7}  \times 14 \\  \implies \: length \: of \: arc = 11cm

perimeter \: of \: a \: sector = 2r +  \\ length \: of \: arc  \\  \implies \: 2r + length \: of \: arc \\  \implies2(14) + 11 \\ 28 + 11 = 39cm

area \: of \: sector  \\   \frac{ \theta}{360}  \times \pi \: r {}^{2}  \\   \implies \frac{45}{360}  \times  \frac{22}{7} (14) {}^{2}  \\   \implies\frac{1}{8}  \times  \frac{22}{7}  \times (14 \times 14) \\ \implies area \: of \: sector = 77cm {}^{2}

Similar questions