Math, asked by samsungalaxyf62, 1 day ago

2.
The condition that sin 0,cos O may be the roots of ax+ bx + c = 0 is
a) a (a + 2b) = c2 b) a (a +2c) = b c) b(b + 2c) =a² d) b(b+2a)=c²​

Answers

Answered by Anonymous
186

Given :-

sinθ , cosθ may be the roots of ax² + bx + c = 0

To find :-

Satisfied condition

SOLUTION :-

As they given,

sinθ , cosθ may be the roots of ax² + bx + c = 0

Since,

If α, β are the roots We know ,

 \alpha  +  \beta  =  \dfrac{ - b}{a}

 \alpha  \beta  =  \dfrac{c}{a}

According to the Question,

\blue{sin \theta + cos \theta =  \dfrac{ - b}{a}  -  - eq \: 1}

\blue{sin \theta \: cos \theta \:  =  \dfrac{c}{a}  -  - eq2}

We shall do squaring on both sides for eq 1

(sin \theta + cos \theta) {}^{2}  =  \bigg(\dfrac{ - b}{a}  \bigg) {}^{2}

Expanding the L.H.S equation by (a+b)² = a² + 2ab + b²

sin {}^{2}  \theta + cos {}^{2}  \theta + 2sin \theta \: cos \theta \:  =  \dfrac{b {}^{2} }{a {}^{2} }

From, Trigonometric identities We know that,

sin²A + cos²A = 1

1 + 2sin \theta \: cos \theta \:  =  \dfrac{b {}^{2} }{a {}^{2} }

We know that ,

2sinθ cosθ = c/a

1 +  \dfrac{2c}{a}  =  \dfrac{b {}^{2} }{a {}^{2} }

Take L.C.M in the L.H.S

 \dfrac{a + 2c}{a}  =  \dfrac{b {}^{2} }{a {}^{2} }

a + 2c =  \dfrac{b {}^{2} }{a}

Do cross multiplication

 \blue  {a(a + 2c) = b {}^{2} }

{\boxed{So,\: the \:Required\: Condition\: is \: a(a+2c) = b^2}}

Required Answer :-

a( a+ 2c) = b² [B]

Answered by EmperorSoul
2

★Given :-

sinθ , cosθ may be the roots of ax² + bx + c = 0

★ To find :-

Satisfied condition

★ SOLUTION :-

As they given,

sinθ , cosθ may be the roots of ax² + bx + c = 0

Since,

If α, β are the roots We know ,

 \alpha  +  \beta  =  \dfrac{ - b}{a}

 \alpha  \beta  =  \dfrac{c}{a}

According to the Question,

\blue{sin \theta + cos \theta =  \dfrac{ - b}{a}  -  - eq \: 1}

\blue{sin \theta \: cos \theta \:  =  \dfrac{c}{a}  -  - eq2}

We shall do squaring on both sides for eq 1

(sin \theta + cos \theta) {}^{2}  =  \bigg(\dfrac{ - b}{a}  \bigg) {}^{2}

Expanding the L.H.S equation by (a+b)² = a² + 2ab + b²

sin {}^{2}  \theta + cos {}^{2}  \theta + 2sin \theta \: cos \theta \:  =  \dfrac{b {}^{2} }{a {}^{2} }

From, Trigonometric identities We know that,

sin²A + cos²A = 1

1 + 2sin \theta \: cos \theta \:  =  \dfrac{b {}^{2} }{a {}^{2} }

We know that ,

2sinθ cosθ = c/a

1 +  \dfrac{2c}{a}  =  \dfrac{b {}^{2} }{a {}^{2} }

Take L.C.M in the L.H.S

 \dfrac{a + 2c}{a}  =  \dfrac{b {}^{2} }{a {}^{2} }

a + 2c =  \dfrac{b {}^{2} }{a}

Do cross multiplication

 \blue  {a(a + 2c) = b {}^{2} }

{\boxed{So,\: the \:Required\: Condition\: is \: a(a+2c) = b^2}}

★Required Answer :-

a( a+ 2c) = b² [B]

Similar questions