2. The diameter of a road roller is 98 cm. It takes 100 complete revolutions to level the ground of area 308 sq.m. Find the length of the roller.
Answers
Given that,
Diameter of a road roller = 98 cm
So, radius of road roller, r = 49 cm
Let assume that length of the roller be h cm.
We know, Area covered by road roller in 1 revolution is curved surface area of cylinder of radius r and height h.
[ Road roller is in the shape of cylinder ]
According to statement,
So,
Additional information :-
Step-by-step explanation:
\large\underline{\sf{Solution-}}
Solution−
Given that,
Diameter of a road roller = 98 cm
So, radius of road roller, r = 49 cm
Let assume that length of the roller be h cm.
We know, Area covered by road roller in 1 revolution is curved surface area of cylinder of radius r and height h.
[ Road roller is in the shape of cylinder ]
\begin{gathered}\rm \: Area_{(Covered \: in \: 1 \: revolution)}= CSA_{(Cylinder)} \\ \end{gathered}
Area
(Coveredin1revolution)
=CSA
(Cylinder)
\begin{gathered}\rm \: Area_{(Covered \: in \: 1 \: revolution)}= 2\pi \: rh \\ \end{gathered}
Area
(Coveredin1revolution)
=2πrh
\begin{gathered}\rm\implies \: Area_{(Covered \: in \: 100 \: revolution)}= 200\pi \: rh \\ \end{gathered}
⟹Area
(Coveredin100revolution)
=200πrh
According to statement,
\rm \: Area_{(Covered \: in \: 100 \: revolution)} = 308 \: {m}^{2} = 3080000 \: {cm}^{2} Area
(Coveredin100revolution)
=308m
2
=3080000cm
2
So,
\begin{gathered}\rm \: 200\pi \: rh \: = \: 3080000 \\ \end{gathered}
200πrh=3080000
\begin{gathered}\rm \: 200 \times \dfrac{22}{7} \times 49 \times h \: = \: 3080000 \\ \end{gathered}
200×
7
22
×49×h=3080000
\begin{gathered}\rm \: 200 \times 22 \times 7\times h \: = \: 3080000 \\ \end{gathered}
200×22×7×h=3080000
\begin{gathered}\rm\implies \:h \: = \: 100 \: cm \: = \: 1 \: m \\ \end{gathered}
⟹h=100cm=1m
\rule{190pt}{2pt}
Additional information :-
\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bf{Volume_{(cube)} = {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
MoreFormulae
MoreFormulae
★CSA
(cylinder)
=2πrh
★Volume
(cylinder)
=πr
2
h
★TSA
(cylinder)
=2πr(r+h)
★CSA
(cone)
=πrl
★TSA
(cone)
=πr(l+r)
★Volume
(sphere)
=
3
4
πr
3
★Volume
(cube)
=(side)
3
★CSA
(cube)
=4(side)
2
★TSA
(cube)
=6(side)
2
★Volume
(cuboid)
=lbh
★CSA
(cuboid)
=2(l+b)h
★TSA
(cuboid)
=2(lb+bh+hl)
- thanks