Math, asked by yashkhairkar87, 2 months ago

2
The general solution of dy/dx + (1+2x) y = e^-x^2
de tu
fG​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \frac{dy}{dx}   + (1 + 2x)y  =  {e}^{ -  {x}^{2} }  \\

Here,

I.F. =  {e}^{ \int(1 + 2x)dx} =  {e}^{x +  {x}^{2} }   \\

Now,

y. {e}^{x +  {x}^{2} }  =  \int {e}^{ -  {x}^{2} } . {e}^{x +  {x}^{2} } dx \\

 \implies \: y. {e}^{x +  {x}^{2} }  =  \int {e}^{x}  dx \\

 \implies \: y. {e}^{x +  {x}^{2} }  =   {e}^{x}  + C\\

Similar questions