Physics, asked by vineela34, 1 year ago




2. The horizontal range and the maximum height of a
projectile are equal. The angle of projection of the
projectile is

(1) = tan-1(2)
(2) = 450°
(3) = tan-1(1/4)
(4) = tan-1(4)​

Answers

Answered by Anonymous
34

Answer:-

 \mathsf{\theta = (4)Tan^{-1}}

Given :-

The maximum height and the horizontal range of projectile are equal.

To find :-

The angle of the projection of the projectile.

Solution:-

The horizontal range of projectile is given by formula:-

 \huge \boxed{R = \dfrac{ u^2 Sin2\theta}{g}}

The maximum height of projectile is given by :-

 \huge \boxed{H = \dfrac{u^2 Sin^2 \theta}{2g} }

A/Q

 \mathsf{R = H }

 \mathsf{\dfrac{u^2 Sin2\theta}{g}= \dfrac{u^2 Sin^2 \theta}{2g}}

  • Cancelling out u² and g.

 \mathsf{Sin2 \theta = \dfrac{Sin^2 \theta }{2}}

 \mathsf{2Sin\theta Cos\theta = \dfrac{Sin^2 \theta }{2}}

\mathsf{ 4 Sin\theta Cos \theta = Sin^2 \theta}

  • Cancelling out  Sin\theta

 \mathsf{4 Cos \theta = Sin \theta}

 \mathsf{4 =\dfrac{Sin\theta}{Cos\theta}}

 \mathsf{Tan\theta = 4}

 \mathsf{\theta = (4)Tan^{-1}}

hence,

The angle of projection will be  \mathsf{(4)Tan^{-1}}

Similar questions