2. the hypotenuse of a right angled triangle
exceds twice one side by l and exceeds the other by 2
Find the hypotenuse.
Answers
Answer:
17
Step-by-step explanation:
Let the hypotenuse be 'a'.
In question,
Hypotenuse = twice the first side + 1
→ a - 1 = twice the first side
→ (a - 1)/2 = first side.
Also, hypotenuse = second side + 2
→ a = 2nd side + 2
→ a - 2 = 2nd side
Using Pythagoras theorem:
→ a² = (a - 2)² + {(a - 1)/2}²
→ a² = (a² + 2² - 2*2*a) + {(a² + 1 - 2a)/4}
→ a² = {4(a² + 4 - 4a) + (a² + 1 - 2a)}/4
→ 4a² = 4a² + 16 - 16a + a² + 1 - 2a
→ 4a² = 5a² - 18a + 17
→ 5a² - 4a² - 18a + 17 = 0
→ a² - 18a + 17 = 0
→ a² - 17a - a + 17 = 0
→ a(a - 17) - a(a - 17) = 0
→ (a - 1)(a - 17) = 0
→ a = 1 or 17
a cant 1, as, if a = 1, then 2nd side = 1 - 2 = -1, which is not possible.
So, a = 17
Answer:
Step-by-step explanation:
Let the altitude of triangle be x cm.
Hypotenuse of triangle = 2x + 1
Base of triangle = 2x - 1.
According to the Question,
Using Pythagoras theorem,
⇒ (2x + 1)² = x² + (2x - 1)²
⇒ 4x² + 1 + 4x = x² + 4x² + 1 - 4x
⇒ x² - 8x = 0
⇒ x(x - 8) = 0
⇒ x = 0, 8 (Neglecting 0)
⇒ x = 8 cm
Altitude of triangle = x = 8 cm
Hypotenuse of triangle = 2x + 1 = 2(8) + 1 = 16 + 1 = 17 cm
Base of triangle = 2x - 1 = 2(18) - 1 = 16 - 1 = 15 cm.