Math, asked by lalitabenpatel61, 9 months ago

* 2. The median of the following data is 50
Find the values of p and q if the sum of
all the frequencies is 90
Marks
Frequency
20-30
p
30-40
15
40-50
25
50-60
20
60-70
70-80
8
80-90​

Answers

Answered by Anonymous
104

✦CORRECT QUESTION :-

◮The median of the following data is 50 .Find the value of p and q ,if the sum of all frequencies is 90.

\begin{gathered}\boxed{\begin{array}{c|c} \underline{\sf{Classes}}&\sf{ \underline{Frequency}} \\ \sf{} & \sf{} & \sf{} \\ 20-30&p\\30 - 40&15 \\ 30-40 & 25 \\ 40-50 & 10\\ 50-60 &20 \\ 60 - 70&q \\ 70 - 80&8  \\ 80 - 90&10   \\\boxed{ \sf \:  \: total \:  \: }& \longrightarrow \boxed{ \sf90} \:  \:  \:  \:  \:  \: \end{array}}\end{gathered}

FORMULA REQUIRED :-

 \bigstar \boxed{ \sf median = l +  \frac{ \frac{n}{2} - c.f }{f}  \times h}

SOLUTION:-

⠀⠀⠀⠀•Let n= sum of frequencies

⠀⠀⠀⠀•c.f=Cumulative frequency

⠀⠀⠀⠀•l=lower limit of the class

⠀⠀⠀⠀•h=height of the class

⠀⠀⠀⠀•f=frequency of the preceding class

⠀⠀⠀⠀•m=median of the frequencies.

Let's draw Cumulative frequency distributive table

\begin{gathered}\boxed{\begin{array}{c|c|c } \underline{\sf{Classes}}&\sf{ \underline{Frequency}}& \sf  \underline{cumulative \: frequency}\\ \sf{} & \sf{} & \sf{} \\ 20-30&p&p\\30 - 40&15 &15 + p \\ 40-50 & 25&40 + p\\ 50-60 &20 &60 + p\\ 60 - 70&q &60 + p + q\\ 70 - 80&8  &68 + p + q\\ 80 - 90&10& \underline{   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 78 + p + q  \:  \:  \:  \:  \:  \:  \:  \:  \:   } \\\boxed{ \sf \:  \: total \:  \: }& \longrightarrow \boxed{ \sf90} \:  \:  \:  \:  \:  \: \end{array}}\end{gathered}

Now , Given that,

n=90,

n/2=90/2=45

⠀⠀⠀⠀⠀⠀

Which lies in the interval 50-60

Here, l=50, f=20

cf=40+p and h=10

⠀⠀⠀⠀⠀⠀

 \sf median = 50 +  \dfrac{45 - 40 - p}{20}  \times 10

It is given that median of the following frequencies is 50

⠀⠀⠀⠀⠀⠀

 \sf \therefore50 = 50 +  \dfrac{45 - 40 - p}{20}

 \implies \sf \cancel{50} - \cancel{ 50} =  \dfrac{5 - p}{2}

 \implies \sf2 \times 0 = 5 - p

 \implies \sf 5 - p = 0

 \implies \sf p = 5

⠀⠀⠀⠀⠀⠀

Also we have

 \implies \sf78 + p + q = 90

⠀⠀⠀⠀⠀⠀

Putting p=5 in above equation we get,

 \implies \sf78 + 5 + q = 90

 \implies \sf q = 90 - 83

 \implies  \sf q = 7

⠀⠀⠀⠀⠀⠀

Hence ,the required value of p and q are 5 and 7 respectively.

Similar questions