Physics, asked by rahulhassan5935, 2 months ago

2. The moment of ineritia of an obfect about
am aris in 200kg-m2. What is the reduis
gyreation of the object about the anis?
Weight of the object in 19.6N.​

Answers

Answered by Anonymous
15

TOPIC :- Rotational Dynamics

\maltese\:\underline{\sf AnsWer :}\:\maltese

  • Moment of inertia (I) = 200 kg-m²
  • Weight of the object (F) = 19.6 N
  • Radius of gyration (K) = ?

To calculate the radius of gyration about an axis we will use the given below formula :

:\implies I \sf = MK^2 \\

But here first we need to find the mass of the object. So, let's first find the mass of the object

\longrightarrow\:\:\sf F = mg \\

\longrightarrow\:\:\sf m =  \dfrac{F}{g} \\

\longrightarrow\:\:\sf m =  \dfrac{19.6}{9.8} \\

\longrightarrow\:\: \underline{ \boxed{\sf m =  2 \: kg}} \\

Hence, the mass (M) of the object is 2 kg. Now, let's find the radius of gyration (K).

:\implies I \sf = MK^2 \\

:\implies  \sf200 = 2 \times K^2 \\

:\implies  \sf K^2 =  \dfrac{200}{2}  \\

:\implies  \sf K^2 = 100\\

:\implies  \sf K =  \sqrt{100} \\

:\implies \underline{ \boxed{\sf K =  10 \: m}}


TheValkyrie: Great!
Anonymous: Tysm ! ❤️
Answered by Ridvisha
26

{ \underline{ \underline{ \rm{ \orange{ \huge{QUESTION}}}}}}

The moment of inertia of an object about an axis is 200 kg m^2 . What is the radius of gyration of the object about the axis ?

Weight of the object is 19.6 N.

{  \underline{ \underline{ \rm{ \orange{ \huge{SOLUTION}}}}}}

{  \leadsto{ \underline{  \underline{ \rm{ \pink{given}}}}}} \\  \\ { \dashrightarrow{ \sf{ \blue{moment \: of \: inertia(l) = 200 \: kg \:  {m}^{2} }}}} \\  \\ { \dashrightarrow{ \sf{ \blue{ \: weight \: of \: object \: (w) = 19.6 \:N}}}}

{ \leadsto{ \underline{ \underline{ \rm{ \pink{to \: find}}}}}} \\  \\ { \sf{ \: radius \: of \: gyration \: (k) \: .}}

{ \boxed{ \boxed{ \sf{ \green{weight(w)= mass(m) \times acceleration(g)}}}}} \\  \\ { \rightarrow{ \sf{ mass(m) =  \frac{w}{g} }}} \\  \\ { \rightarrow{  \sf{ mass(m) =  \frac{19.6 \:N }{9.8 \: m \:  {sec}^{ - 2} } }}} \\  \\ { \rightarrow { \boxed{ \boxed{ \red{ \sf{mass(m) = 2 \: kg}}}}}}

{ \sf { \underline{ \blue{using\: the\: formula}}}} \\  \\ { \underline{ \boxed{ \green{ \sf{(l) = m \:  \times   \:  {k}^{2} }}}}} \\  \\ { \rightarrow{ \sf{ {k}^{2}  =  \frac{l}{m} }}}

{ \rightarrow{ \sf{ {k}^{2}  =  \frac{200 \: kg \:  {m}^{2} }{2 \: kg}}}}  \\  \\ { \rightarrow{ \sf{ {k}^{2}  = 100 \:  {m}^{2} }}} \\  \\ { \rightarrow{ \sf{k =  \sqrt{100 \:  {m}^{2} } }}}

{ : { \implies{ \underline{ \boxed{ \sf{ \red{radius \: of \: gyration(k) = 10 \: m}}}}}}}

Similar questions