Math, asked by arushigoswami79, 26 days ago

2. The polar form of i
the   \: polar \: form \: of \: i  {75} \: is

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\: {i}^{75}

Let assume that

\rm :\longmapsto\: z = {i}^{75}

can be rewritten as

\rm :\longmapsto\: z = {i}^{74}  \times i

\rm :\longmapsto\: z =  {( {i}^{2}) }^{37}   \times i

\rm :\longmapsto\: z =  {( - 1)}^{37}   \times i

\rm :\longmapsto\: z =   - 1   \times i

\rm :\longmapsto\: z =   -  i

is the standard form and now we have to represent this in standard form.

So, the above complex number have to be represent in the form

\boxed{\tt{ z \:  =  \: r \: (cos \theta \:  +  \: i \: sin \theta \: }}

So, above complex number can be rewritten as

\rm :\longmapsto\: z = 0  -  i

\rm :\longmapsto\: z = cos\bigg(\dfrac{\pi}{2}  \bigg) - isin\bigg(\dfrac{\pi}{2}  \bigg)

We know,

\boxed{\tt{ cos( - x) = cosx}} \:  \: and \:  \: \boxed{\tt{ sin( - x) - sinx}}

So, using this, we get

\rm :\longmapsto\: z = cos\bigg( - \dfrac{\pi}{2}  \bigg) +  i \: sin\bigg( - \dfrac{\pi}{2}  \bigg)

can be rewritten as

\rm :\longmapsto\: z = 1\bigg[cos\bigg( - \dfrac{\pi}{2}  \bigg) +  i \: sin\bigg( - \dfrac{\pi}{2}  \bigg)\bigg]

which is the required polar form having

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{ |z|  = 1} \\  \\ &\sf{arg(z) =  - \dfrac{\pi}{2} } \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Answered by HarshitJaiswal2534
0

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\: {i}^{75}

Let assume that

\rm :\longmapsto\: z = {i}^{75}

can be rewritten as

\rm :\longmapsto\: z = {i}^{74}  \times i

\rm :\longmapsto\: z =  {( {i}^{2}) }^{37}   \times i

\rm :\longmapsto\: z =  {( - 1)}^{37}   \times i

\rm :\longmapsto\: z =   - 1   \times i

\rm :\longmapsto\: z =   -  i

is the standard form and now we have to represent this in standard form.

So, the above complex number have to be represent in the form

\boxed{\tt{ z \:  =  \: r \: (cos \theta \:  +  \: i \: sin \theta \: }}

So, above complex number can be rewritten as

\rm :\longmapsto\: z = 0  -  i

\rm :\longmapsto\: z = cos\bigg(\dfrac{\pi}{2}  \bigg) - isin\bigg(\dfrac{\pi}{2}  \bigg)

We know,

\boxed{\tt{ cos( - x) = cosx}} \:  \: and \:  \: \boxed{\tt{ sin( - x) - sinx}}

So, using this, we get

\rm :\longmapsto\: z = cos\bigg( - \dfrac{\pi}{2}  \bigg) +  i \: sin\bigg( - \dfrac{\pi}{2}  \bigg)

can be rewritten as

\rm :\longmapsto\: z = 1\bigg[cos\bigg( - \dfrac{\pi}{2}  \bigg) +  i \: sin\bigg( - \dfrac{\pi}{2}  \bigg)\bigg]

which is the required polar form having

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{ |z|  = 1} \\  \\ &\sf{arg(z) =  - \dfrac{\pi}{2} } \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions