World Languages, asked by gujjarvishalkasana, 8 months ago

2. The radii of two circles are 8 cm and 6 cm respectively. Find
the radius of the circle having area equal to the sum of the
areas of the two circles.

Answers

Answered by chaudharyayesha035
5

Explanation:

The radius of the first circle = 8 cm

Second radius of the circle = 6 cm

Area of a circle = pi R square

Then

Put the value of pi and R

22/7 and 8

22/7(8)squar

201.14

And second question

same to same first question

22/7(6) square

113.14cm

Answered by Anonymous
66

Solution:

We have,

\bullet\:\:\textsf{Radius of first circle = \textbf{8 cm}} \\ </p><p>

\bullet\:\:\textsf{Radius of second circle = \textbf{6 cm}} \\ </p><p>

Let the radius of first circle be \r_1 and second circle be \r_2 and required radius be 'r'.

\bigstar \:  \: \sf Area  \: of  \: first  \: circle = \pi r_{1}^2 \\  \\  \\

: \implies \sf Area  \: of  \: first  \: circle = \pi ( {8})^{2}  \\  \\  \\

: \implies \sf Area  \: of  \: first  \: circle = 64\pi  \\

__________________________

\bigstar \:  \: \sf Area  \: of  \: second \: circle = \pi r_{2} ^2 \\  \\  \\

: \implies \sf Area  \: of  \: second\: circle = \pi ( {6})^{2}  \\  \\  \\

: \implies \sf Area  \: of  \: second\: circle = 36\pi  \\  \\  \\

_______________________

Now, we have to find area of required circle :

\bigstar\:\: \boxed{\boxed{ \sf Area  \: of \:  required  \: circle = Sum \:  of  \: the  \: area  \: of \:  both  \: the \:  circles}}\:\:\bigstar \\  \\ </p><p>

\dag\:\: \boxed{ \sf Area  \: of \:  required  \: circle =Area  \: of \:  first \:  circle + Area  \: of \:  second \:  circle </p><p> }\:\:\dag \\  \\ </p><p>

\dashrightarrow \:  \:  \sf Area  \: of  \: required\: circle =64\pi +  36\pi  \\  \\  \\

\dashrightarrow \:  \:  \sf  \cancel{\pi} r^{2}  =100 \cancel{\pi } \\  \\  \\

\dashrightarrow \:  \:  \sf  r^{2}  =100 \\  \\  \\

\dashrightarrow \:  \:  \sf  r= \sqrt{100}  \\  \\  \\

\dashrightarrow  \: \:  \underline{ \boxed{ \sf Radius = 10  \: cm}} \\  \\

\therefore\:\underline{\textsf{Radius of required circle is \textbf{10 cm}}}.

Similar questions