Math, asked by sahoorubi22, 1 month ago

2. The Rationalization of 1 is: 11-1120​

Attachments:

Answers

Answered by Anonymous
0

 \frac{1}{ \sqrt{11 -  \sqrt{120} } }

 \frac{1}{ \sqrt{11 -2  \sqrt{30} } }

 \frac{\sqrt{11 -2  \sqrt{30} }}{ {11 -2  \sqrt{30} }}

 \frac{\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)} }{ {11}^{2}  - (2 \sqrt{30) {}^{2} } }

 \frac{\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)} }{ 121 - (2 \sqrt{30) {}^{2} } }

 \frac{\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)}(121 + (2 \sqrt{30) {}^{2} }  }{ 121  {}^{2} - ((2 \sqrt{30) {}^{2} }) {}^{2}  }

 \frac{\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)}(121 + (2 \sqrt{30) {}^{2} }  }{ 14641 - ((2 \sqrt{30) {}^{2} }) {}^{2}  }

 \frac{\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)}(121 + (2 \sqrt{30) {}^{2} }  }{ 14641 - (2 \sqrt{30) {}^{4} } }

 \frac{\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)}(121 + (2 \sqrt{30) {}^{2} }  }{  {121}^{2}  - {120}^{2} }

 \frac{\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)}(121 +  2  {}^{2} \sqrt{30) {}^{2} }  }{  {121}^{2}  - {120}^{2} }

 \frac{\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)}(121 +  4 \sqrt{30) {}^{2} }  }{  {121}^{2}  - {120}^{2} }

 \frac{\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)}(121 +  4  \times 30) }{  {121}^{2}  - {120}^{2} }

 \frac{\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)}(121 +  120) }{  {121}^{2}  - {120}^{2} }

 \frac{\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)} \times 241 }{  {121}^{2}  - {120}^{2} }

 \frac{241\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)} }{  {121}^{2}  - {120}^{2} }

 \frac{241\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)} }{ 14641 - {120}^{2} }

 \frac{241\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)} }{ 14641 - 14400 }

 \frac{241\sqrt{11 -2  \sqrt{30} }(11 + 2 \sqrt{30)} }{ 241 }

\sqrt{11 -2  \sqrt{30}}(11 + 2 \sqrt{30} )

Similar questions