2. The sum of the digits of a 2-digit number is 7. If the digits are reversed, the new number is equal to 3 less than 4 times the original no . find the original no
3 less than 4 times the original number. Find the original number.
Answers
Solution :-
Let the digits of the two digit number be x and y
Sum of the digits = 7
⇒ x + y = 7
⇒ x = 7 - y
Original number = 10x + y
New number when digits are reversed = 10y + x
Given
New number when digits are reversed = 3 less than the 4 times the Original number
⇒ 10y + x = 4(10x + y) - 3
⇒ 10y + x = 40x + 4y - 3
⇒ 10y + x - 40x - 4y = - 3
⇒ 6y - 39x = - 3
⇒ 3(2y - 13x) = - 3
⇒ 2y - 13x = - 3/3
⇒ 2y - 13x = - 1
Substitute x = 7 - y in the above equation
⇒ 2y - 13(7 - y) = - 1
⇒ 2y - 91 + 13y = - 1
⇒ 15y = - 1 + 91
⇒ 15y = 90
⇒ y = 90/15
⇒ y = 6
Subtitute y = 6 in x = 7 - y
⇒ x = 7 - y
⇒ x = 7 - 6
⇒ x = 1
Original number = 10x + y
= 10(1) + 6
= 10 + 6
= 16
Therefore the original number is 16.
Answer:
let the digit at unit's place be 'x' and digit at tens place be = Y.
Then original no. = 10x +Y
Sum of digit = 7
=> x + Y =7 ...... 1
Also , 10 y +× = 4 ( 10x+Y)-3
=> 10 y + x = 40x + 4 y -3 ..
=> 39 x -6y = 3
=> 13 x -2 y = 1.......1
Multiplying equation 1 by 2 , we get 2x +2y = 14.....3
Adding equation 2 and 3
15 x = 15
=> x= 1
Y=6
Hence , = 10x+y =10(1) +6 = 16
HOPE IT HELPS YOU ✔✔✔