Math, asked by kandaswamy3211, 1 month ago

2. The value of (42)5 is a. 4-3. b. 45. C.47 d. 410​

Answers

Answered by ig9331706
3

Step-by-step explanation:

Given :-

Student's: A B C D E F G H I J

Height (in CM's): 155, 153, 168, 160, 162, 166, 164, 180, 157, 165

To Find :-

Arthimetic mean

Solution :-

Arthimetic mean - A + Σfd/Σf

Taking mean as 162 as it lies in the middle

\begin{gathered}\left[\begin{array}{ccc}\bf Height&\bf Mean_{Difference}&\bf Product\\155&155-162=-7&155(-7)=-1085\\153&153-162=-9&153(-9)=-1377\\ 168&168-162=6&168(6)=1008\\ 160&160-162=-2&160(-2)=-320\\162&162-162=0&162(0)=0\\ 166&166-162=4&166(4)=664\\ 164&164-162=2&164(2)=328\\ 180&180-162=18& 180(18)=3240\\157&157-162=-5&157(-5)=-785\\ 165&165-162=3&165(3)=495\\\sf \sum f =1622&&\sf \sum fd=2168 \end{array}\right]\end{gathered}⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡Height155153168160162166164180157165∑f=1622MeanDifference155−162=−7153−162=−9168−162=6160−162=−2162−162=0166−162=4164−162=2180−162=18157−162=−5165−162=3Product155(−7)=−1085153(−9)=−1377168(6)=1008160(−2)=−320162(0)=0166(4)=664164(2)=328180(18)=3240157(−5)=−785165(3)=495∑fd=2168⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤

By using the above formula

[Note - I'm writing A.M instead of the Arithmetic mean]

A.M = 162 + (2168/1622)

A.M = 162 + 1.33

A.M = 163.33 cm

Answered by rahulkumarmeena9681
0

Answer:

option d us correct

Step-by-step explanation:

I think this is correct answer

Similar questions