Math, asked by ajaytiwari4964, 9 days ago

2. Three angles of a triangle (3x + 50), (x + 20) and (2x + 20). Greatest angle of the triangle is -​

Answers

Answered by aftabahemad
1

In context to questions asked,

We have to determine the value of greatest angle of triangle.

As per questions,

It is given that,

Three angles of a triangle (3x + 50), (x + 20) and (2x + 20)

As we know that,

Sum of all angles of triangle is 180 degree.

So, we will get,

(3x + 50) + (x + 20) + (2x + 20) = 180 \\  =  > 6x + 90 = 180 \\  =  > 6x = 180 - 90 \\  =  > 6x = 90 \\  =  > x =  \frac{90}{6}  \\  =  > x =  {15}^{0}

Hence, the value of angles will be,

(3x + 50) = 45 + 50  =  {95}^{0}  \\ (x + 20) = 15 + 20 =  {35}^{0}  \\ (2x + 20) = 30 + 20 =  {50}^{0}

Hence, value of greatest angle will be 95 degree

Answered by Teluguwala
10

Given :-

Three angles of a triangle (3x + 50), (x + 20) and (2x + 20)

 \:

 \:

To Find :-

Greatest angle of the triangle

 \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:

Used Formula :-

\bf  \red{⟼  \:  Sum  \: of  \: all  \: angles _{(Triangle)}= 180°}

 \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:

Solution :-

In Δle,

Sum of all angles = 180°

Let,

First angle = (3x + 50)

Second angle = (x + 20)

Third angle = (2x + 20)

So,

 \bf ⟹ \:  Sum  \: of  \: all  \: angles _{(Triangle)}= 180°

 \bf⟹ \:  (3x + 50) + (x + 20)  +  (2x + 20) = 180 \degree

 \bf⟹ \:  6x + 90 = 180 \degree

 \bf⟹ \:  6x  = 180 - 90 \degree

\bf⟹ \:  6x  = 90 \degree

 \displaystyle\bf⟹ \:  x  =  \cancel \frac{90}{2}

\red{⟹ \: \underline{  \boxed{ \bf x  = 15}}}

Now,

First angle = (3x + 50) = 3×15 + 50 = 95°

Second angle = (x + 20) = 15 + 20 = 35°

Third angle = (2x + 20) = 2×15 + 20 = 50°

 \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:

Verification :-

\bf ⟹ \:  Sum  \: of  \: all  \: angles _{(Triangle)}= 180°

\bf ⟹ \:95 + 35 + 50= 180°

\bf ⟹  \: \boxed{ \bf180°= 180°}

Hence, verified !

 \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:

Similar questions