Math, asked by saanvi17gupta, 10 months ago

2
Three numbers are in the ratio 2: 3:4. The sum of three cubes is
33957. Find the difference between the greatest and the smallest number
between the greatest and the smallest number

Answers

Answered by Anonymous
3

\huge\red{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\bold{Difference \ between \ greater \ and }

\bold{smaller \ number \ is \ 14.}

\bold\orange{Given:}

\bold{=>Three \ numbers \ are \ in \ ratio \ of}

\bold{2:3:4}

\bold{=>Sum \ of \ their \ cube \ is \ 33957.}

\bold\pink{To \ find:}

\bold{Difference \ between \ greatest \ and}

\bold{smaller \ number.}

\bold\green{\underline{\underline{Solution:}}}

\bold{Let \ the \ common \ multiple \ be \ x.}

\bold{\therefore{Numbers \ are \ 2x, \ 3x \ and \ 4x}}

\bold{According \ to \ given \ condition}

\bold{(2x)^{3}+(3x)^{3}+(4x)^{3}=33957}

\bold{8x^{3}+27x^{3}+64x^{3}=33957}

\bold{99x^{3}=33957}

\bold{x^{3}=\frac{33957}{99}}

\bold{x^{3}=343}

\bold{Taking \ cube \ root \ of \ both \ sides}

\bold{\therefore{x=7}}

\bold{=>Greater \ number=4x}

\bold{\therefore{=>Greater \ number=4×7=28}}

\bold{=>Smaller \ number=2x}

\bold{\therefore{=>Smaller \ number=2×7=14}}

\bold{\therefore{Difference \ between \ greater}}

\bold{number \ and \ smaller \ number}

\bold{=28-14=14}

\bold\purple{\tt{\therefore{Difference \ between \ greater \ and }}}

\bold\purple{\tt{smaller \ number \ is \ 14.}}

Similar questions