Math, asked by undertaker5213, 3 months ago

✓2 times the distance between (0,5)and(-5,0)is..​

Answers

Answered by muskanshi536
3

Step-by-step explanation:

 \huge \mathtt \pink{to \: solve} \pink \to

\frac{4}{x} + \frac{5}{y} = 7 ; \frac{3}{x} + \frac{4}{y} = 5</p><p></p><p>

 \huge \mathtt \pink{solution} \pink \to

\displaystyle {4} \left(  \frac{1}{x} \right) </p><p></p><p> +  \displaystyle{5} \left(  \frac{1}{y} \right) = 7.  .  .  (i)

\displaystyle{3} \left(  \frac{1}{x} \right) + 4 \displaystyle \left( \frac{1}{y} \right) = 5...(ii)</p><p></p><p>

 \sf{replacing} \displaystyle \left( \frac{1}{x} \right) \sf \: by \: m \: and \:  \displaystyle \left( \frac{1}{y} \right) \sf \:  \\  \sf by \: n \: in \: equation \\  \sf (i)and(ii) \: we \: get \:

 \text{4m + 5n = 7...(iii)}

 \text{3m + 4n = 5...(iv)}

 \mathtt{on \: solving \: these \: equation \: we \: get}

 \text{m = 3, \: n =  - 1}

 \mathtt{now,m =  \frac{1}{x}}

 \therefore \boxed {3 =  \frac{1}{x}}

  \therefore\boxed{x =  \frac{1}{3}}

[/tex]</p><p></p><p>[tex] \sf{n =  \frac{1}{y}}

 \therefore \boxed{ - 1 =  \frac{1}{y}}

 \therefore \boxed{y =  - 1}

 \therefore \mathtt{solution \: of \: given \: simultaneous \: equation \: is \: } \\  \\  \\  \\   \boxed{(x,y) = ( \frac{1}{3}, - 1)}

Similar questions