Math, asked by ashrayr, 11 months ago

2 to the power - log 7 to the base 1/2​

Answers

Answered by binnymajumder
2

Answer:

7

Step-by-step explanation:

Mark me as brainliest

Attachments:
Answered by ItzArchimedes
70

ANSWER:

 \purple{ \to}\red{ \tt{ {2}^{ log_{ \frac{1}{2} }(7) } }}

We know that

 \small{ \sf{ \implies \green{ \dfrac{1}{2} } \red \to \purple{ {2}^{ - 1} } }}

Substituting we get

 {\rm{ \red{ \to}{ {2}^{ log_{ {2}^{ - 1} }(7) } } }}

Using

 { \rm{\implies \green{  \log_{ {b}^{x} }( a)  } \red{ \to }  \purple{\frac{1}{x}  \log_{b}(a) } }}

  \orange\to{ \rm{  {2}^{ -  log_{2}(7) } }}

Using

  \implies   \green{  - \log_{x}(a) } \red \to \purple {  \log_{x}(  \frac{1}{a} ) }

We get

 \blue \to{ { \rm{ {2}^{ log_{2}( \frac{1}{7} ) } }}}

Using

 \implies  \green{ {x}^{   \log_{x}(a)  } }\red{ \to}  \purple{a}

{ \bf{ \green \to  \dfrac{1}{7} }}

Hence,

 {\bf{  \purple{{2}^{ log_{ \frac{1}{2} }(7) }} \longrightarrow  \orange{ \dfrac{1}{7} } }}

Similar questions