Math, asked by 7786, 1 year ago

2 to the power of 30 + 2 to the power of 29 + 2 to the power of 28 divided by 2 to the power of 31 + 2 to the power of 30 - 2 to the power of 29 is equals to 7 divided by 10 prove that

Answers

Answered by honeysvb
2
(2^30+2^29+2^28)/(2^31+2^30-2^29)=(2^29*2^1+2^29+2^29/2^1)/(2^29*2^2+2^29*2^1-2^29)=
[2^29(2+1+1/2)]/[2^29(4+2-1)]=(3+1/2)/5=7/10
                                  
                                Hence proved.

7786: Thanks
Answered by Salmonpanna2022
2

Step-by-step explanation:

 \bf \underline{Prove\: that-} \\

   \sf\dfrac{ {2}^{30} +  {2}^{29}  +  {2}^{28}  }{ {2}^{31} +  {2}^{30}  -  {2}^{29}  }  =  \dfrac{7}{10}

 \bf \underline{Solution-} \\

{~~~~~~:~~~\implies\sf\dfrac{ {2}^{30} +  {2}^{29}  +  {2}^{28}  }{ {2}^{31} +  {2}^{30}  -  {2}^{29}  }  =  \dfrac{7}{10} }\\

\textsf{Taking 2²⁸ Common }

\\{~~~~~~:~~~\implies\sf\dfrac{  {2}^{28}( {2}^{2} +  {2}^{1}  +  {2}^{0}  )}{  {2}^{28} ({2}^{3} +  {2}^{2}  -  {2}^{1})  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{   \cancel{{2}^{28}}( 4 +  2  +  1  )}{   \cancel{{2}^{28} }(8 +  4 -  2)  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{   1 \times   7}{  1(12 - 2)  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{  7}{  10}  =  \dfrac{7}{10} } \\

\textsf{LHS = RHS}\\

 \bf \underline{Hence\: proved.} \\

Similar questions