Physics, asked by am136394, 8 months ago


2 Two pulleys of diameters di&. d2 are at distance 'X' apart are
connected by means of an open belt drive, the length of the belt is
Options (Marks: 4)
(Tap/Click on option)
Option 1
TT/2 (dl+d2)2x+(d1+d2)2/4x
Option 2
D TI/2 (d1-d2)2x+(d1-d2)2/4x
Option 3
T/2 (d1+d2)2x+(d1-d2)2/4x
Option 4
TT/2 (d1-d2)2x+(d1+d2)2/4x​

Answers

Answered by khushibatth
8

Explanation:

Magnets are objects that produce magnetic fields and attract metals like iron, nickel and cobalt

Answered by sarahssynergy
0

The length of the belt for an open belt drive between two pulleys is               L=\frac{\pi}{2}(d_1+d_2)+2x+\frac{(d_1-d_2)^2}{4x}

Explanation:

  • given the diameters of the two pulleys as d_1, d_2 such that d_1>d_2 hence let their corresponding radii be r_1\ and\ r_2 and the distance between them is x.
  • then let the angle of lap be \alpha , the length of belt taunt at upper side between both the pulleys be l, the arc length of belt on first pulley be l_1 and the arc length of belt on second pulley be l_2 .  
  • then we have  , \alpha=sin\alpha= \frac{r_1-r_2}{x}  
  • for the arc length on first pulley we have,                                                            l_1=r_1(\frac{\pi }{2}+\alpha )\\l_1=r_1(\frac{\pi}{2}+\frac{r_1-r_2}{x} )    -----(a)
  • for arc length on second pulley we have,                                                          l_2=r_2(\frac{\pi}{2}-\alpha ) \\l_2=r_2(\frac{\pi}{2}- \frac{r_1-r_2}{x} )  ----- (b)
  • for the length of taunt upper part we have,                                                              l=\sqrt{x^2-(r_1-r_2)^2} \\l=x({1-(\frac{r_1-r_2}{x})^2 })^\frac{1}{2}
  • using binomial theorem we get,                                  l=x(1-\frac{(r_1-r_2)^2}{2x^2} ) \\l=x-\frac{(r_1-r_2)^2}{2x}   -----(c)
  • now the total length of the belt is given by, L=2(l_1+l+l_2)  
  • from (a)(b) and (c) we get,                                                                                        L=2(r_1(\frac{\pi}{2}+\frac{r_1-r_2}{x} ) +x-\frac{(r_1-r_2)^2}{2x}+ r_2(\frac{\pi}{2}+\frac{r_1-r_2}{x} )) \\L=\pi(r_1+r_2)+2x+\frac{(r_1-r_2)^2}{x}                                              substituting the values of diameters we get,                                                           L=\frac{\pi}{2}(d_1+d_2)+2x+\frac{(d_1-d_2)^2}{4x}       --------ANSWER                                                                                                                

Similar questions