Physics, asked by angelina231, 11 months ago

2 vectors having equal magnitude s A make an angle theta with each other. Find the magnitude and direction of the resultant.

Answers

Answered by IamIronMan0
1

Answer:

magnitude

  |a + b| =  \sqrt{ {a}^{2} +  {b}^{2}  + 2ab \cos( \theta)  }  \\   \\since \:  |a|   =  |b| \\  \\  =  \sqrt{a {}^{2}  +  {a}^{2}  + 2(a)(a) \cos\theta } \\  \\  =  \sqrt{2 {a}^{2}(1 + cos \theta) }  \\  \\  =  \sqrt{2 {a}^{2}.2 \cos {}^{2} ( \frac{ \theta}{2} )  }  \\  \\ =  2acos \frac{ \theta}{2}

Another way

Assume that vector a is along x axis and b is at angle theta with it . magnitude of b is a as well .

Take components of b along x and y axis .

the resultant vector is

(a + a \cos( \theta) )i + a \sin( \theta) j \\  \\  |a + b|  =  \sqrt{ ({a + acos \theta)}^{2}  +  {a}^{2}  \sin {}^{2} ( \theta) }  \\  \\  |a + b|  =  \sqrt{ {a}^{2} (1 + 2cos \theta +cos {}^{2} ( \theta)  + sin {}^{2} ( \theta) }  \\  \\  =  \sqrt{ {a}^{2} (1 +2 cos \theta + 1)}  \\ \\   = a \sqrt{2(1 + cos \theta)}

Again same results

Angle of resultant

 \tan( \alpha ) =   \frac{a \sin( \theta) }{a + a \cos( \theta) }  \\  \\  \tan( \alpha )  =  \frac{ \sin( \theta) }{1 +  \cos( \theta) }  =  \tan( \frac{ \theta}{2} )   \\  \\  \alpha  = { \theta \over2}

Attachments:
Similar questions