Math, asked by nothingsomuch, 1 year ago

-2) Verify whether the value in the brackets is the solution of the given equation.

x + 5 = 18 ( x = 1)

7x + 5 = 17 ( x = – 2)

7x + 5 = 19 ( x = 2)

4y – 3 = 11 (y = 1)

4y – 3 = 12 ( y = – 4)

4y – 3 = 14 ( y = 0)


SOLVE IT ........

⚠️DON'T SPAM OR IT WILL BE REPORTED ⚠️​

Answers

Answered by xItzKhushix
13

Answer:

) Here, x + 5 is  H.S, 18 is R.H.S and x = 1  ( given data)

L.H.S = x + 5,

By putting, x = 1,

L.H.S = 1 + 5 = 6 \neq R.H.S

As, L.H.S \neq R.H.S , so x = 1 is not a solution.

 

2) Here, 7x + 5 is  H.S, 17 is R.H.S and x = – 2  ( given data)

L.H.S = 7x + 5,

By putting, x = – 2,

L.H.S = 7(-2) + 5 = -9 \neq L.H.S

As, L.H.S \neq R.H.S , so x = – 2 is not a solution.

 

3) Here, 7x + 5 is  H.S, 19 is R.H.S and x = 2  ( given data)

L.H.S = 7x + 5,

By putting, x = 2,

L.H.S = 7(2) + 5 = 19 = R.H.S

As, L.H.S = R.H.S, so x = 2 is a solution.

 

4) Here, 4y – 3 is  H.S, 11 is R.H.S and y = 1  ( given data)

L.H.S = 4y – 3,

By putting, y = 1,

L.H.S = 4(1) – 3 = 1 \neq L.H.S

As, L.H.S \neq R.H.S, so y = 1 is not a solution.

 

5) Here, 4y – 3 is  H.S, 12 is R.H.S and y = – 4  ( given data)

L.H.S = 4y – 3,

By putting, x = – 4,

L.H.S = 4(-4) – 3 = -19 \neq R.H.S

As, L.H.S \neq R.H.S, so y = – 4 is not a solution.

 

6) Here, 4y – 3 is  H.S, 14 is R.H.S and y = 0  ( given data)

L.H.S = 4y – 3,

By putting, x = 0,

L.H.S = 4(0) – 3 = -3 \neq R.H.S

As, L.H.S \neq R.H.S, so y = 0 is not a solution.

HOPE IT HELPS YOU

Answered by Xsuman682X
1

Here, x + 5 is  H.S, 18 is R.H.S and x = 1  ( given data)

L.H.S = x + 5,

By putting, x = 1,

L.H.S = 1 + 5 = 6 \neq R.H.S

As, L.H.S \neq R.H.S , so x = 1 is not a solution.

 

2) Here, 7x + 5 is  H.S, 17 is R.H.S and x = – 2  ( given data)

L.H.S = 7x + 5,

By putting, x = – 2,

L.H.S = 7(-2) + 5 = -9 \neq L.H.S

As, L.H.S \neq R.H.S , so x = – 2 is not a solution.

 

3) Here, 7x + 5 is  H.S, 19 is R.H.S and x = 2  ( given data)

L.H.S = 7x + 5,

By putting, x = 2,

L.H.S = 7(2) + 5 = 19 = R.H.S

As, L.H.S = R.H.S, so x = 2 is a solution.

 

4) Here, 4y – 3 is  H.S, 11 is R.H.S and y = 1  ( given data)

L.H.S = 4y – 3,

By putting, y = 1,

L.H.S = 4(1) – 3 = 1 \neq L.H.S

As, L.H.S \neq R.H.S, so y = 1 is not a solution.

 

5) Here, 4y – 3 is  H.S, 12 is R.H.S and y = – 4  ( given data)

L.H.S = 4y – 3,

By putting, x = – 4,

L.H.S = 4(-4) – 3 = -19 \neq R.H.S

As, L.H.S \neq R.H.S, so y = – 4 is not a solution.

 

6) Here, 4y – 3 is  H.S, 14 is R.H.S and y = 0  ( given data)

L.H.S = 4y – 3,

By putting, x = 0,

L.H.S = 4(0) – 3 = -3 \neq R.H.S

As, L.H.S \neq R.H.S, so y = 0 is not a solution.

Similar questions