2. Vertices of the triangles taken in order and their areas are given below. In each of the
following find the value of a.
Vertices Area (in sq. units)
(i) ( , 0 0), (4, a), (6, 4) 17
(ii) (a, a), (4, 5), (6,-1) 9
(iii) (a, -3), (3, a), (-1,5) 12
Answers
Answered by
0
Hi ,
******************************************"*****
The area of the triangle formed by the points
A( x1,y1) , B( x2,y2) , C(x3 , y3) is
1/2|x1 ( y2 - y1) + x2 (y3-y1) + x3 ( y1 - y2 )|
***************************************************
Now ,
1) Let A ( 0,0), B( 4 , a ) , C( 6 , 4 ) are three
vertices of the triangle ,
area of ∆ = 17 sq units
1/2| 0( a - 4 ) + 4( 4 - 0 ) + 6( 0 - a ) | = 17
16 - 6a = 17 × 2
-6a = 34 - 16
-6a = 18
a = 18/(-6)
a = -3
2 ) Let A( a , a ) , B( 4 , 5 ) , C( 6 , -1 ) are three
vertices of the triangle ,
area of the triangle = 9
1/2 | a [ 5 -(-1 )] + 4 ( -1 - a ) + 6 ( a - 5 ) | = 9
6a - 4 - 4a + 6a - 30 = 18
8a - 34 = 18
8a = 42
a = 42/8
a = 21/4
3 ) Let A ( a , -3 ) , B( 3 , a ), C( -1 , 5 ) are three
vertices of the triangle ,
area of the triangle = 12 sq units
1/2| a ( a - 5 ) + 3[ 5 - ( -3 ) ] + ( -1 )( -3 - a ) | = 12
a² - 5a + 24 + 3 + a = 24
a²-4a + 27 - 24 = 0
a² - 4a + 3 = 0
a² - 3a - a + 3 = 0
a( a - 3 ) - ( a - 3 ) = 0
( a - 3 )( a - 1 ) = 0
Therefore ,
a - 3 = 0 or a - 1 = 0
a = 3 or a = 1
I hope this helps you.
: )
******************************************"*****
The area of the triangle formed by the points
A( x1,y1) , B( x2,y2) , C(x3 , y3) is
1/2|x1 ( y2 - y1) + x2 (y3-y1) + x3 ( y1 - y2 )|
***************************************************
Now ,
1) Let A ( 0,0), B( 4 , a ) , C( 6 , 4 ) are three
vertices of the triangle ,
area of ∆ = 17 sq units
1/2| 0( a - 4 ) + 4( 4 - 0 ) + 6( 0 - a ) | = 17
16 - 6a = 17 × 2
-6a = 34 - 16
-6a = 18
a = 18/(-6)
a = -3
2 ) Let A( a , a ) , B( 4 , 5 ) , C( 6 , -1 ) are three
vertices of the triangle ,
area of the triangle = 9
1/2 | a [ 5 -(-1 )] + 4 ( -1 - a ) + 6 ( a - 5 ) | = 9
6a - 4 - 4a + 6a - 30 = 18
8a - 34 = 18
8a = 42
a = 42/8
a = 21/4
3 ) Let A ( a , -3 ) , B( 3 , a ), C( -1 , 5 ) are three
vertices of the triangle ,
area of the triangle = 12 sq units
1/2| a ( a - 5 ) + 3[ 5 - ( -3 ) ] + ( -1 )( -3 - a ) | = 12
a² - 5a + 24 + 3 + a = 24
a²-4a + 27 - 24 = 0
a² - 4a + 3 = 0
a² - 3a - a + 3 = 0
a( a - 3 ) - ( a - 3 ) = 0
( a - 3 )( a - 1 ) = 0
Therefore ,
a - 3 = 0 or a - 1 = 0
a = 3 or a = 1
I hope this helps you.
: )
Similar questions